Tìm Min , Max nếu có
A=(x-1)(x+2)(x+3)(x+6) +2020
Tìm Max, Min của các biểu thức:
A= |4x-3|+|5y+7,5|+17,5
B= |x-2|+|x-6|+2017 (Min)
C= 2020-|x+1|-|y-2| biết x+y=5
D= 2/3 + 21/ (x+3y)2 +5|x+5|+14
E= 27-2x / 12-x; x thuộc Z (MAX)
Tìm Min , Max nếu có
A=(x-1)(x+2)(x+3)(x+6)
3 tick cho ai nhanh nhất ạ
bạn kiểm tra lại đề nhé! mình nghĩ A=(x+1)(x+2)(x+3)(x+6) thì đúng hơn
Tìm Max,Min của
A= \(x\left(2018+\sqrt{2020-x^2}\right)\)
1: Tìm max: S= -(3x-2)^2-(3x-1)^2
2: S=-x^2-3y^2-2xy+10x+18y+8
2: tìm min max: P=6x-8/x^2+9
3: tìm max : S=-x^2+4x+1/2x^2+6
4 tìm min A= x^6+512/x^2+8
5 tìm min A= 2x^16x+41/x^2-8x+22
6 tìm min A= x^2-4x+1/x^2
7 tìm max A= x/(x+10)^2
8 cho x+y=1, x,y>0 tìm min A=1/x+1/y
Mọi người ơi giải giuos mình với chiều nay mình hk r mà chưa bt cách giải làm sao mn giúp mình với ai đúng mình sẽ tích cho nhé ngay và luôn luôn. Cảm ơn mn nhiều
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Tìm Min(Max) nếu có thể
E=-x^2+2*x-1;
C=(x^2-1)*(3*x-10)*(3*x-16)
mik đag cần gấp
E = - \(x^2\) + 2\(x\) - 1
E = - (\(x^2\) - 2\(x\) + 1)
E = - (\(x\) - 1)2
(\(x\) - 1) ≥ 0 ⇒ - (\(x\) - 1)2 ≤ 0
Emax = 0 ⇔ \(x\) = 1
Để tìm các điểm tới hạn của hàm E, chúng ta cần tìm các giá trị của x tại đó đạo hàm của E bằng 0.
Lấy đạo hàm của E theo x, ta được:
E' = -2x + 2
Đặt E' bằng 0 và tìm x:
-2x + 2 = 0
-2x = -2
x = 1
Vậy điểm tới hạn của E là x=1.
Để tìm các điểm tới hạn của hàm C, chúng ta cần tìm các giá trị của x tại đó đạo hàm của C bằng 0.
Lấy đạo hàm của C theo x, ta được:
C' = (2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16)
Đặt C' bằng 0 và giải tìm x:
(2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16) = 0
Phương trình này khá phức tạp và không có nghiệm đơn giản. Nó sẽ yêu cầu thao tác đại số hơn nữa hoặc các phương pháp số để tìm các điểm tới hạn của C.
\(...E=x^2+2x+1-2\)
\(\Rightarrow E=\left(x+1\right)^2-2\ge-2\)
(Vì \(\left(x+1\right)^2\ge0,\forall x\))
Suy ra Min(E)=-2
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Cho x,y là hai số thực thỏa mãn \(2x^2+\frac{y^2}{4}:\frac{1}{x^2}=3\) . Tìm Max,Min của B = 2020 + xy
giải hộ em
a,Tìm min, max: 4x-16 căn x+4y-22 căn y-4 căn xy+36
b, tìm max :B= 6 cẵn+3/2x+4
c, Tìm Min : C=2/1-x+1/x
Tìm Min hoặc Max
a)A=(x-3)^2+(x-11)^2
b)B=(x+1)(x-2)(x-3)(x-6)
a) Ta có \(A=\left(x-3\right)^2+\left(x-11\right)^2=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)
\(=2\left(x^2-14x+49\right)+32=2\left(x-7\right)^2+32\ge32\)
Vậy minA = 32 khi x = 7.
b) \(B=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x=t\Rightarrow B=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
minB = -36 khi t = 0 hay \(x^2-5x=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)