Tìm giá trị nhỏ nhất của biểu thức
C = 2x2 + 2y2 + 26 + 12x - 8y
Tìm giá trị nhỏ nhất của biểu thức : B = 2x2+2y2+z2+2xy+2xz-6x-8y-2z+13
\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)
\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức
C = 2x2 + 2y2 + 26 + 12x - 8y
C = 2x2 + 2y2 + 26 + 12x - 8y
C = (2x2 + 12x + 18) + (2y2 - 8y + 8)
C = 2(x2 + 6x + 9) + 2(y2 - 4y + 4)
C = 2(x + 3)2 + 2(y - 2)2 \(\ge\)0 với mọi x;y
Dấu "=" xảy ra <=> x + 3 = 0 và y - 2 = 0
<=> x = -3 và y = 2
Vậy MinC = 0 khi x = -3 và y = 2
\(C=2\left(x^2+6x+9\right)+2\left(y^2-4y+4\right)=2\left(x+3\right)^2+2\left(y-2\right)^2\ge0\)
Vậy MIN C=0 khi và chỉ khi x+3=y-2=0 suy ra x=-3;y=2
C = 2x2 + 2y2 + 26 + 12x - 8y
C = ( 2x2 + 12x + 18 ) + ( 2y2 - 8y + 8 )
C = 2( x2 + 6x + 9 ) + 2( y2 - 4y + 4 )
C = 2( x + 3 )2 + 2( y - 2 )2
\(\hept{\begin{cases}2\left(x+3\right)^2\ge0\forall x\\2\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+3\right)^2+2\left(y-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Vậy CMin = 0 , đạt được khi x = -3 , y = 2
Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 2xy – 6x – 8y + 2028
Lời giải:
$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$
$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$
$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$
Vậy $P_{\min}=2018$
Giá trị này đạt tại $x+y-3=y-1=0$
$\Leftrightarrow y=1; x=2$
Cho 2 hai số thực x, y thỏa mãn e x - 4 y + 1 - x 2 - e y 2 + 1 - x 2 - y = y 2 - x 4 . Giá trị lớn nhất của biểu thức P = x 3 + 2 y 2 - 2 x 2 + 8 y - x + 2 bằng
A. 2
B. 58 27
C. 115 27
D. 122 27
Cho các số thực x, y dương và thỏa mãn log 2 x 2 + y 2 3 xy + x 2 + 2 log 2 x 2 + 2 y 2 + 1 ≤ log 2 8 xy .Tìm giá trị nhỏ nhất của biểu thức P = 2 x 2 - xy + 2 y 2 2 xy - y 2 .
tìm giá trị nhỏ nhất của các biểu thức
A=2x^2-10x+17
B=(x-1)(x+2)(x+3)(x+6)
C=5x^2+y^2+10+4xy-14x-6y
D=2x^2+2y^2+26+12x-8y
E=5x^2+10y^2+26-14xy-18x-28y
A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)
= (x+2y+3/2)2 + (y+5/2)2 + 15
=> A min = 15
Dấu "=" xảy ra khi y=-5/2 ; x=7/2
\(A=x^2+5y^2+4xy+3x+8y+26\)
\(=\left(x^2+4xy+4y^2\right)+\left(3x+6y\right)+\frac{9}{4}+\left(y^2+2y+1\right)+\frac{91}{4}\)
\(=\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)
\(=\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\forall x,y\)
Dấu"="xảy ra khi \(\orbr{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)
Vậy .....
Tìm giá trị nhỏ nhất của biểu thức C = x2 + 2y2 – 2xy – 4y + 5
Ta có : C = (x2 - 2xy + y2) + ( y2 – 4y+4)+1 = (x –y)2 + (y -2)2 + 1 Vì (x – y)2 ≥ 0 ; (y-2)2 ≥ 0 Do vậy: C ≥ 1 với mọi x;y Dấu “ = ” Xảy ra khi x-y = 0 và y-2 =0 ⇔ x=y =2Vậy: Min C = 1 khi x = y =2
Cho hai số thực dương x,y thỏa mãn 2x + 2y = 4. Tìm giá trị lớn nhất Pmax của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy.
A. Pmax = 27 2
B. Pmax = 18
C. Pmax = 27
D. Pmax = 12
Đáp án B.
Ta có 4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y
⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .
Suy ra x y ≤ x + y 2 2 = 1
Khi đó
P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y
≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y
= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18
Vậy Pmax = 18 khi x = y = 1.