Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Phuc Duy
Xem chi tiết
Vũ Tiến Manh
13 tháng 10 2019 lúc 15:10

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)

Full Moon
Xem chi tiết
Full Moon
16 tháng 10 2018 lúc 19:51

ĐKXĐ: \(x>0\)

Ta có:

\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)

\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)

\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)

Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)

Khi đó pt đã cho trở thành:

\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Tương tự

King of Alien
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Chibi
20 tháng 4 2017 lúc 16:52

ĐK: x \(\ne\) 0, \(\sqrt{2}\) < x < \(\sqrt{2}\)

Đặt y = \(\sqrt{2-x^2}\)

=> y2 = 2 - x2

Ta có hệ PT

\(\frac{1}{x}\)+\(\frac{1}{y}\)= 2

x2 + y2 = 2

<=>

\(\frac{x+y}{xy}\)= 2

(x + y)2 - 2xy = 2

Đặt S = x + y, P = xy

<=>

\(\frac{S}{P}\)= 2

S2 - 2P = 2

<=>

S = 2P

S2 - 2P = 2

=>

4P2 - 2P = 2

<=>

P = 1 và S = 2

Hoặc P = -1/2 và S = -1

TH1: P = 1 và S = 2

x và y là 2 nghiệm của PT: X2 - SX + P = 0

<=> X2 - 2X + 1 = 0

=> X = 1

=> Nghiệm x = 1

TH2: P = -1/2 và S = -1

x và y là 2 nghiệm của PT: X2 - SX + P = 0

<=> X2 + X -\(\frac{1}{2}\)= 0

<=>

X = \(\frac{-1-\sqrt{3}}{2}\)(Nhận) 

Hoặc X = \(\frac{-1+\sqrt{3}}{2}\)(Loại)

Vậy, Nghiệm của phương trình là:

x = 1

Hoặc x = \(\frac{-1-\sqrt{3}}{2}\)

Chibi
20 tháng 4 2017 lúc 16:57

Cái điều kiện là x \(\ne\)0, \(-\sqrt{2}\) < x < \(\sqrt{2}\)nhé.

Chibi
20 tháng 4 2017 lúc 17:06

Nghiệm x = \(\frac{-1+\sqrt{3}}{2}\) bị loại vì lúc này y = \(\frac{-1-\sqrt{3}}{2}\)

x > 0, y < 0 nên phép suy ra lúc ta đặt y = \(\sqrt{2-x^2}\)=> y2 = 2 - xkhông tương đương.

Nguyễn Thị Thanh Trang
Xem chi tiết
B.Thị Anh Thơ
4 tháng 8 2019 lúc 10:31

Đặt \(\sqrt{x}=t\left(t>0\right)\)

\(\Leftrightarrow\frac{1}{1+t^2}+\frac{2}{1+t}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{1+t+2t+2t^2}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{2t^2+3t+1}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{\left(t+1\right)\left(2t+1\right)}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{2t+1}{1+t^2}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow2t^2\left(2t+1\right)=\left(2-t\right)\left(1+t^2\right)\)

\(\Leftrightarrow4t^3+2t^2=2+2t^2+1+t^3\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Full Moon
Xem chi tiết
lý canh hy
12 tháng 10 2018 lúc 22:15

ĐKXĐ x>0

Chia cả 2 vế của pt cho \(\sqrt{x}\ne0\),ta được

\(12+\sqrt{\frac{x-1}{x}}=\frac{2}{x}+\sqrt{\frac{169x-65}{x}}\)

\(\Rightarrow12-\frac{2}{x}+\sqrt{1-\frac{1}{x}}=\sqrt{65\left(1-\frac{1}{x}\right)+104}\)(2)

Đặt \(\sqrt{1-\frac{1}{x}}=a\)(\(a\ge0\)),khi đó pt (1) trở thành

\(2a^2+10+a=\sqrt{65a^2+104}\)

\(\Leftrightarrow\left(2a^2+a+10\right)^2=65a^2+104\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+3a-1\right)=0\)

Đến đây bn tự giải tiếp nhé

Le Minh Hieu
Xem chi tiết
Le Minh Hieu
14 tháng 10 2019 lúc 21:28

j vậy bn ?

Nguyễn Thùy Chi
Xem chi tiết
nguyễn mạnh
Xem chi tiết