Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ko Cần Bt
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết
Le Tuan Anh
Xem chi tiết
Rin Huỳnh
27 tháng 12 2023 lúc 20:44

Đặt \(f\left(x\right)=ax^2+bx+c\).

\(f\left(0\right)=c;f\left(1\right)=a+b+c\)

Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tran Le Khanh Linh
22 tháng 7 2020 lúc 21:40

2, (trích đề thi học sinh giỏi Bến Tre-1993)

\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0 

=> đpcm

*bài này tui làm tắt, không hiểu ib 

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
15 tháng 7 2020 lúc 8:19

Vừa lm xog bị troll chứ, tuk quá 

\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)

\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)

Khử mẫu : 

\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)

Tự xử nốt, lm bài này muốn phát điên mất. 

Khách vãng lai đã xóa
Tran Le Khanh Linh
22 tháng 7 2020 lúc 21:37

đk \(x\ne\pm b\)

quy đồng mẫu, khử mẫu chung, ta đưa phương trình đã cho về phương trình

\(\left(x^2-b^2\right)\left[\left(1-a\right)-\left(1-a^2\right)x\right]=0\)(1)

với điều kiện x2-b2 khác 0, phương trình (1)trở thành (1-a)-(1-a2)x=0  <=> (1-a2)x=1-a (2)

với a=\(\pm\)1 => (2) vô ngiệm => (1) cũng vô nghiệm và phương trình đã cho cũng vô nghiệm

với a khác \(\pm\)1 => (2) có nghiệm \(x=\frac{1}{1+a}\)

để giá trị x=\(\frac{1}{1+a}\)là nghiệm của phương trình đã cho thì \(\frac{1}{1+a}\ne\pm b\)

kết quả: a=\(\pm1\Rightarrow S=\varnothing\)

\(\hept{\begin{cases}a\ne\pm1\\\frac{1}{1+a}\ne\pm b\end{cases}\Rightarrow S=\left\{\frac{1}{1+a}\right\}}\)

Khách vãng lai đã xóa
Huỳnh Quốc Thái
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 22:59

Lời giải:

\(A=\frac{(bc)^3+(2ac)^3+(2ab)^3}{8a^2b^2c^2}=\frac{(bc)^3+(2ac+2ab)^3-3.2ac.2ab(2ac+2bc)}{8a^2b^2c^2}\)

\(=\frac{(bc)^3+(-bc)^3+12a^2b^2c^2}{8a^2b^2c^2}=\frac{12}{8}=1,5\)

Anh Mai
Xem chi tiết
Trung
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

Đinh Tuấn Việt
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

Sennn
Xem chi tiết