Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Van
Xem chi tiết
Hoàng Nguyễn Văn
1 tháng 7 2019 lúc 15:48

Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)

Vậy khẳng định đúng với n=1.

Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)

Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:

\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)

\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)

\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)

Mà \(\left(m^3+3m^2+5m\right)⋮3\)

\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)

Do đó khẳng định đúng với n=m+1.

Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)

Nguyễn Linh Chi
1 tháng 7 2019 lúc 15:43

\(\forall n\ge1,n\in N\)

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1) (n+2)  tích của 3 số tự nhiên liên tiếp

=> n( n+1) (n+2) chia hết cho 3

và 3n c hia hết cho 3

=> \(n^3+3n^2+5n\) chia hết cho 3

Slendrina
Xem chi tiết
T.Thùy Ninh
14 tháng 6 2017 lúc 20:15

\(a,n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)

Ngọc Thiện Hồ
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

Lưu Phúc Bình An
10 tháng 12 2023 lúc 20:40

Rảnh à?

 

Vietnhi Vo
Xem chi tiết
Minh Triều
17 tháng 6 2015 lúc 9:52

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

Hoàng Nguyễn Xuân Dương
17 tháng 6 2015 lúc 9:56

trieu dang làm đúng rùi

Trần Bảo Hân
Xem chi tiết
Trần Bảo Hân
17 tháng 9 2023 lúc 16:16

câu b là n^2 + n + 6 không chia hết cho 4

Hoàng Trọng Tùng
17 tháng 9 2023 lúc 16:18

Chắc vậy

Hoàng Phú Minh
Xem chi tiết
Dương No Pro
23 tháng 3 2021 lúc 22:37

\(\text{Giải: }\)

\(\text{Gọi ƯCLN ( 3n + 2 ; 5n + 3 ) = d }\)\(\left(d\in N\text{* }\right)\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}\Rightarrow\left(15n+10\right)-\left(15n+9\right)}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\text{3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau}\)

\(\Rightarrow\frac{3n+2}{5n+3}\text{là phân số tối giản }\)

\(\text{Vậy ..................................}\)

có j thắc mắc thì ib cho  mk nhé

Khách vãng lai đã xóa
Nguyễn Huy Tú
24 tháng 3 2021 lúc 12:57

Đặt ƯCLN  \(3n+2;5n+3=d\)( d \(\inℕ^∗\))

Ta có : \(3n+2⋮d\Rightarrow15n+10⋮d\)(1) 

\(5n+3⋮d\Rightarrow15n+9⋮d\)(2)

Lấy (1) - (2) ta được : \(15n+10-15n-9⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
Lining
Xem chi tiết
Hiền Thảo Bùi
Xem chi tiết