Cho \(4a^2+b^2=2\) và \(c+d=4\)
Tính GTNN của \(A=2ac+bd+cd\)
cho a,b,c,d thỏa mãn:
4a^2 +b^2 =2 và c + d =4
Tính GTNN của A = 2ac + bd + cd
Ta có:
\(c+d=4\)
\(\Rightarrow\left(c+d\right)^2=4^2\)
\(\Rightarrow c^2+2cd+d^2=16\)
\(\Rightarrow4a^2+b^2+c^2+2cd+d^2=2+16=18\left(1\right)\)
Áp dụng bất đẳng thức Cauchy ta có:
\(4a^2+c^2\ge2.2a.c=4ac\)
\(b^2+d^2\ge2bd\)
\(\Rightarrow4a^2+b^2+c^2+d^2\ge4ac+2bd\)
\(\Rightarrow4a^2+b^2+c^2+2cd+d^2\ge4ac+2bd+2cd\)
\(\Rightarrow18\ge4ac+2bd+2cd\left(theo\left(1\right)\right)\)
\(\Rightarrow18\ge2\left(2ac+bd+cd\right)\)
\(\Rightarrow9\ge2ac+bd+cd\)
\(\Rightarrow2ac+bd+cd\le9\)
\(\Rightarrow A_{max}=9\Leftrightarrow2a=c;b=d\)
Để max đúng
BẠN LÀM SAI RỒI phải tìm rõ cả a,b,c,d
Nếu ko lm sao có dấu bằng xảy ra
vì hệ pt 4a2+b2=2 c=d
c+d=4; 2a=b
vô nghiệm
Bài toán :
Cho a, b, c, d thỏa mãn : 4a2 + b2 = 2 và c + d = 4
Tính Min của A = 2ac + bd + cd
Tìm GTLN của T= 2ac+bd+cd trong đó a,b,c,d là các số thực thỏa mãn:
4a2+b2=2 và c+d=4
Bài toán :
Cho a, b, c, d thỏa mãn : 4a2 + b2 = 2 và c + d = 4
Tính Min của A = 2ac + bd + cd
Ta có:
\(c+d=4\)
\(\Rightarrow\left(c+d\right)^2=4^2\)
\(\Rightarrow c^2+2cd+d^2=16\)
\(\Rightarrow4a^2+b^2+c^2+2cd+d^2=2+16=18\left(1\right)\)
Áp dụng bất đẳng thức Cauchy, ta lại có:
\(4a^2+c^2\ge2.2a.c=4ac\)
\(b^2+d^2\ge2bd\)
\(\Rightarrow4a^2+b^2+c^2+d^2\ge4ac+2bd\)
\(\Rightarrow4a^2+b^2+c^2+2cd+d^2\ge4ac+2bd+2cd\)
\(\Rightarrow18\ge4ac+2bd+2cd\) ( Theo (1) )
\(\Rightarrow18\ge2\left(2ac+bd+cd\right)\)
\(\Rightarrow9\ge2ac+bd+cd\)
\(\Rightarrow2ac+bd+cd\le9\)
\(\Rightarrow Amax=9\Leftrightarrow2a=c;b=d\)
Đề tìm Max mới đúng
Giúp mình với mọi người ơi.
Cho a,b,c thỏa mãn điều kiện.
4a^2+b^2=2
c+d=4
Tìm giá trị lớn nhất của A = 2ac+bd+cd
Cho 4a2 + b2 = 2
va c + d = 4
Max A = 2ac + bd +cd
Đố ai giải duoc do
Giúp mình với mọi người ơi.
Cho a,b,c thỏa mãn điều kiện.
\(4a^2+b^2=2\)
\(c+d=4\)
Tìm giá trị lớn nhất của A = 2ac+bd+cd
Ta có: c + d = 4.
<=> (c+d)2 = 16.
<=> c2 + 2cd + d2 = 16.
<=> 4a2 + b2 + c2 + 2cd + d2 = 2 + 16 = 18. (1)
Áp dụng BĐT Cauchy, ta có:
4a2 + c2 ≥ 2*2a*c = 4ac. (2)
b2 + d2 ≥ 2bd. (3)
Từ (1), (2) và (3) suy ra:
18 ≥ 4ac + 2bd + 2cd.
<=> 9 ≥ 2ac + bd + cd.
max A = 9 <=> 2a=c ; b=d.
Tam giác ABC vuông tại A, AB = 2AC, vẽ AH vuông góc với BC. Lấy D thuộc BC sao cho AC = CD, E thuộc AB sao cho BD = BE. Trên tia đối của CD lấy F sao cho AH2 = HD.HF
a, Nhận dạng tam giác ADF
b, CMR: BD2 = AB. AE
1. Cho hình thang ABCD có góc A = góc D = 90 độ , đáy nhỏ AB = a , cạnh bên BC = 2 a . Gọi M , N lần lượt là trung điểm AD , AB
a / Tính số đo các góc ABC , BAN
b/ Chứng minh tam giác NAD đều
c/ Tính MN theo a
2. a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
3. Cho tứ giác ABCD :
a/ Chứng minh rằng AB + CD < AC + BD
b/ Cho biết AB + BD < hoặc = AC + CD
Chứng minh rằng AB < AC
4. Cho hình thang ABCD có AC vuông góc BD . CHứng minh rằng :
a/ AB^2 + CD^2 = AD^2 + BC^2
b/ ( AB + CD )^2 = AC^2 + BD^2
bạn hỏi thế này thì chả ai muốn làm -_- dài quá
Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!
dài quà làm sao mà có thòi gian mà trả lời .bạn hỏi ít thoi chứ