Ta có:
\(c+d=4\)
\(\Rightarrow\left(c+d\right)^2=4^2\)
\(\Rightarrow c^2+2cd+d^2=16\)
\(\Rightarrow4a^2+b^2+c^2+2cd+d^2=2+16=18\left(1\right)\)
Áp dụng bất đẳng thức Cauchy, ta lại có:
\(4a^2+c^2\ge2.2a.c=4ac\)
\(b^2+d^2\ge2bd\)
\(\Rightarrow4a^2+b^2+c^2+d^2\ge4ac+2bd\)
\(\Rightarrow4a^2+b^2+c^2+2cd+d^2\ge4ac+2bd+2cd\)
\(\Rightarrow18\ge4ac+2bd+2cd\) ( Theo (1) )
\(\Rightarrow18\ge2\left(2ac+bd+cd\right)\)
\(\Rightarrow9\ge2ac+bd+cd\)
\(\Rightarrow2ac+bd+cd\le9\)
\(\Rightarrow Amax=9\Leftrightarrow2a=c;b=d\)
Đề tìm Max mới đúng