Giải các phương trình sau
a, 5-(x-6)=4(3-2x)
b, 3-4x(25-2x)=8x2+x-300
c, x-\(\frac{2x-5}{5}+\frac{x+8}{6}=7+\frac{x-1}{3}\)
d, \(\frac{x+1}{15}+\frac{x+2}{7}\frac{x+4}{4}+6=0\)
e,\(\frac{x-91}{37}+\frac{x-86}{42}+\frac{x-78}{50}+\frac{x-49}{79}=4\)
g, \(\frac{x+14}{200}+\frac{x+27}{187}+\frac{x+105}{109}=\frac{x+200}{14}+\frac{x+187}{27}+\frac{x+109}{105}\)
Các bạn giúp mk nha
\(a)5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6=12-8x\)
\(\Leftrightarrow-x+8x=12-5-6\)
\(\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)
a) 5-(x-6)=4(3-2x)
<=>5-x-6=12-8x
<=>-x+8x=2-5-6
<=>7x=1
<=>x=1/7
\(b)3-4x\left(25-2x\right)=8x^2+x-300\)
\(\Leftrightarrow3-100x+8x^2=8x^2+x-300\)
\(\Leftrightarrow101x-303=0\)
\(\Leftrightarrow101\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Cho \(\frac{x^{\text{4}}}{a}+\frac{y^{\text{4}}}{b}=\frac{1}{a+b};x^2+y^2=1\)
Chứng minh rằng:\(\frac{x^{200\text{4}}}{a^{1002}}+\frac{y^{200\text{4}}}{b^{1002}}=\frac{2}{\left(a+b\right)^{102}}\)
Ta có:
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)
Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)
\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)
\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)
\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Leftrightarrow x^2b-y^2a=0\)
\(\Leftrightarrow x^2b=y^2a\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)
Chúc bạn học tốt!
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{200}+\frac{x+3}{201}=\frac{x+2}{202}+\frac{x+1}{203}\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{15}\)
\(\frac{181\left(x+1\right)}{660}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\frac{181\left(x+1\right)}{660}=\frac{17\left(x+1\right)}{52}\)
\(2353\left(x+1\right)=2805\left(x+1\right)\)
\(2353x+2353=2805x+2805\)
\(2353=2805x+2805-2353x\)
\(2353=452x+2805\)
\(2353-2805=452x\)
\(-452=452x\)
\(x=-1\)
Bài 3: Giải các phương trình sau.
\(\frac{x+1}{15}+\frac{x+2}{7}+\frac{x+4}{4}+6=0\)
\(\frac{x+14}{200}+\frac{x+27}{187}+\frac{x+105}{109}=\frac{x+200}{14}+\frac{x+187}{27}+\frac{x+109}{105}\)
Giải:
Ta có:
\(\frac{x+1}{15}+\frac{x+2}{7}+\frac{x+4}{4}+6=0\)
\(\Leftrightarrow\frac{x}{15}+\frac{1}{15}+\frac{x}{7}+\frac{2}{7}+\frac{x}{4}+\frac{4}{4}+6=0\)
\(\Leftrightarrow\frac{x}{15}+\frac{x}{7}+\frac{x}{4}=-\frac{772}{105}\)
\(\Leftrightarrow x\left(\frac{1}{15}+\frac{1}{7}+\frac{1}{4}\right)=-\frac{772}{105}\)
\(\Leftrightarrow x=-16\)
Vậy phương trình trên có nghiệm là x = -16.
b. Cách làm tương tự.
Chúc bạn học tốt@@
Giải phương trình
\(\frac{200}{x}-\frac{200}{x+10}=1\)
\(x\ne\left\{-10;0\right\}\)
\(\Leftrightarrow200\left(x+10\right)-200x=x\left(x+10\right)\)
\(\Leftrightarrow x^2+10x-2000=0\)
\(\Rightarrow\left[{}\begin{matrix}x=40\\x=-50\end{matrix}\right.\)
1. Chứng minh rằng
\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
2. Chứng minh rằng
\(\frac{\sqrt{1}}{1}+\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}+...+\frac{\sqrt{200}}{200}>10+5\sqrt{2}\)
3. Cho a >= 1, b >= 1, chứng minh rằng
\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
4. Giải phương trình
\(\sqrt{\left(x^2-2x+5\right)\left(x^2-4x\right)+7}+x^2-3x+6\)
LÀM PHIỀN M.N GIÚP MK. XIN CẢM ƠN !!!
Với mọi n nguyên dương ta có:
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
Với k nguyên dương thì
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)
\(=\sqrt{k+1}-\sqrt{k-1}\)(*)
Đặt A = vế trái. Áp dụng (*) ta có:
\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)
\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)
...
\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)
Cộng tất cả lại
\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)
3.
Theo bất đẳng thức cô si ta có:
\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)
Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)
Tìm x biết: \(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}\)
Ủa ko có vế phải thì mình làm bằng niềm tin à? :D
Tìm x, biết:
\(\frac{x+5}{200}+\frac{x+4}{201}=\frac{x+3}{202}+\frac{x+2}{203}\)
\(\frac{x+5}{200}+\frac{x+4}{201}=\frac{x+3}{202}+\frac{x+2}{203}\)
=> \(\left(1+\frac{x+5}{200}\right)+\left(1+\frac{x+4}{201}\right)=\left(1+\frac{x+3}{202}\right)+\left(1+\frac{x+2}{203}\right)\)
=> \(\frac{x+205}{200}+\frac{x+205}{201}=\frac{x+205}{202}+\frac{x+205}{203}\)
=> \(\frac{x+205}{200}+\frac{x+205}{201}-\frac{x+205}{202}-\frac{x+205}{203}=0\)
=> \(\left(x+205\right).\left(\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\right)=0\)
Do \(\frac{1}{200}>\frac{1}{202};\frac{1}{201}>1-\frac{1}{203}\)
=> \(\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\ne0\)
=> \(x+205=0\)
=> \(x=-205\)
\(\frac{x+5}{200}+\frac{x+4}{201}=\frac{x+3}{202}+\frac{x+2}{203}\)
\(=>\frac{x+5+200}{200}+\frac{x+4+201}{201}-\frac{x+3+202}{202}-\frac{x+2+203}{203}=0\)
\(=>\frac{x+205}{200}+\frac{x+205}{201}-\frac{x+205}{202}-\frac{x+205}{203}=0\)
\(=>\left(x+205\right).\left(\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\right)=0\)
\(Do:\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\ne0\)
\(=>x+205=0\)
\(=>x=-205\)
\(\frac{3}{1}\)x 4 + \(\frac{3}{4}\)x 7 + \(\frac{3}{7}\)x 10 + ..... + \(\frac{3}{197}\)x 200
Ta có
\(S=3.\left(\frac{1}{1}.4\right)+3.\left(\frac{1}{4}.7\right)+...+3.\left(\frac{1}{197}.200\right)\)
\(S=3.\left(\frac{1}{1}.4+\frac{1}{4}.7+\frac{1}{7}.10+...+\frac{1}{197}.200\right)\)