Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phamdanghoc
Xem chi tiết
Trần Bảo Như
14 tháng 8 2018 lúc 21:29

a, \(B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)(ĐK: \(x\ne1\))

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}\)

\(=\frac{x-2\sqrt{x}+1}{x-1}\)

\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b, ĐK: \(x\ne1\)

\(x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\sqrt{5}+2-\sqrt{5}+2=4\)

Thay \(x=4\left(TM\right)\)vào B ta có:

\(B=\frac{\sqrt{4}-1}{\sqrt{4}+1}=\frac{1}{3}\)

Vậy với \(x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)nên \(B=\frac{1}{3}\)

c. ĐK: \(x\ne1\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Ta có: \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1\)\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\Leftrightarrow\frac{2}{\sqrt{x}+1}\le2\Leftrightarrow\frac{-2}{\sqrt{x}+1}\ge-2\)\(\Leftrightarrow1-\frac{2}{\sqrt{x}+1}\ge-1\)

Dấu = xảy ra \(\Leftrightarrow\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)

Vậy \(MinB=-1\Leftrightarrow x=0\)

d, ĐK: \(x\ne1\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Để \(B\inℤ\Leftrightarrow1-\frac{2}{\sqrt{x}+1}\inℤ\Leftrightarrow\frac{2}{\sqrt{x}+1}\inℤ\)\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}+1\in\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

Vậy với \(x=0\)thì \(B\inℤ\)

Nguyễn Thị Thương
Xem chi tiết
Lê Khánh Linh
Xem chi tiết
Nguyễn Ngọc Lộc
24 tháng 7 2020 lúc 23:54

Bài 3 :

ĐKXĐ : Tự tìm hen ( \(x\ge0\) )

Ta có : \(Z=\frac{6}{x-2\sqrt{x}+3}=\frac{6}{\left(\sqrt{x}-1\right)^2+2}\)

Ta thấy : \(\left(\sqrt{x}-1\right)^2\ge0\)

=> \(\frac{6}{\left(\sqrt{x}-1\right)^2+2}\le3\forall x\)

Vậy MaxZ = 3 <=> x = 1 .


Nguyễn Ngọc Tú Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 0:08

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

Linh Nguyễn
Xem chi tiết
Thiên An
Xem chi tiết
Victorique de Blois
20 tháng 8 2021 lúc 19:07

\(A=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(A=\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)\(\div\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(A=\left(\frac{x+2\sqrt{x}+1+x-\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\frac{2x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4\sqrt{x}}\)

\(A=\frac{2x+1}{4\sqrt{x}}\)

c, \(A=\frac{2x+1}{4\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\)

ap dụng cô si ta có \(\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{4\sqrt{x}}}=\frac{\sqrt{2}}{2}\)

dấu = xảy ra khi \(\frac{\sqrt{x}}{2}=\frac{1}{4\sqrt{x}}\Leftrightarrow x=\frac{1}{2}\) (tm)

Khách vãng lai đã xóa
Nguyễn Thảo Nguyên
Xem chi tiết
Bimbim
11 tháng 8 2020 lúc 15:42

Kết quả là 25

Khách vãng lai đã xóa
Cô gái thất thường (Ánh...
Xem chi tiết
BangBangTan
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết