Cho a,b,c,d khác 0 thỏa mãn ab = cd
CMR: a2014 + b2014 + c2014 + d2014 là hợp số
Cho a, b, c, d là các số tự nhiên khác 0 thỏa mãn ab=cd.CMR a^2 + b^2 +c^2 +d^2 là hợp số
cho các số tự nhiên a,b,c,d đôi một khác nhau và khác 0 thỏa mãn a^2+d^2=b^2+c^=P. chứng minh rằng P là hợp số
Cho 4 số tự nhiên khác 0 thỏa mãn: a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Ta có: \(a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+a^2+b^2=a^2+b^2+c^2+d^2\)
\(\Rightarrow2\left(a^2+b^2\right)=a^2+b^2+c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2\) là chẵn
Xét hiệu: \(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Mà tích 2 số TN liên tiếp là chẵn
⇒ Tổng a+b+c+d là chẵn
Vì \(a+b+c+d>2\) với mọi số TN a,b,c,d khác 0
⇒ a+b+c+d là hợp số
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
cho a,b,c,d là các số tự nhiên khác 0 thỏa mãn a2+c2=b2+d2 .Chứng minh rằng (a+b+c+d)là hợp số
xét biểu thức :
A = ( a2 - a ) + ( b2 - b ) + ( c2 - c ) + ( d2 - d )
Ta thấy A chẵn nên a2 + b2 + c2 + d2 - ( a + b + c + d ) là số chẵn
từ đề bài a2 + c2 = b2 + d2 nên a2 + c2 + b2 + d2 nên a + b + c + d chẵn
Mà tổng này > 2 nên là hợp số
1/Cho a,b,c là các số nguyên khác 0 thỏa mãn ab - ac + bc - c2 = -1.Khi đó a/b = ?? (a phần b mà mik ko bik ghi phân số )
2/Tìm a,b nguyên khác 0 thỏa mãn a + b = ab
Cho a,c là các chữ số khác 0 thỏa mãn a + b =9. Gọi a là tập hợp các giá trị của chữ số b thỏa mãn: abc + cba là một số có ba chữ số. số phần tử của tập hợp a là