cho hình thang ABCD (AB//CD) có AC=BD.Qua điểm B kẻ đường thẳng // AC cắt DC tại E .Chứng minh
a,tam giác BDE cân
b,tam giác ACD=BDC
c,ABCD là hình thang cân
Cho hình thang ABCD { AB// CD} có AB=BD. Qua B kẻ đường thẳng song song với AC, Cắt DC tại E. Chứng Minh Rằng:
a} tam giác BDE cân
b} tam giác ACD=tam giác BDC
c} ABCD là hình thang cân
Cho hình thang ABCD { AB// CD} có AB=BD. Qua B kẻ đường thẳng song song với AC, Cắt DC tại E. Chứng Minh Rằng:
a} tam giác BDE cân
b} tam giác ACD=tam giác BDC
c} ABCD là hình thang cân
Chứng minh định lí "Hình thang có 2 đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB // CD) CÓ AC=BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng minh rằng:
a) Tam giác BDE là tam giác cân
b)Tam giác ACD= Tam giác BDC
c) Hình thang ABCD là hình thang cân
a/vì AB//DC(gt) suy ra AB//DE
và AC//BE(gt)
do hai đoạn thẳng song song(AB//DE) chắn bởi 2 đường thẳng song song (AC//BE) suy ra AC=BE
Mà AC=BD(gt)
suy ra BD=BE
Trong tam giác BDE có BD=BE suy ra tam giác BDE cân tại B (dpcm)
b/Chứng minh:tg ACD=tg BDC
VÌ tg BDE cân tại B nên ta có :GÓc B1 = GÓc E1(*)
Vì AC//BE(gt)
E=C1 là 2 góc đồng vị
suy ra góc C1 =góc E(**)
từ (*);(**) suy ra B1=C1
bạn tự xét tg nha
suy ra tg ACD=tg BDC
c/bạn tự cm lun nha
Cho hình thang cân ABCD ( AB // CD ) . Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC tại E . Chứng minh : a ) ∆ACB = ∆ EBC b ) ∆BDE là tam giác cân c ) Góc ACD = góc BDC
a: Xét ΔACB và ΔEBC có
\(\widehat{ABC}=\widehat{ECB}\)(AB//EC)
BC chung
\(\widehat{ACB}=\widehat{EBC}\)(AC//BE)
Do đó: ΔACB=ΔEBC
b: ΔACB=ΔEBC
=>AC=BE
mà AC=BD
nên BE=BD
=>ΔBDE cân tại B
c: ΔBDE cân tại B
=>\(\widehat{BDE}=\widehat{BED}\)
=>\(\widehat{BDC}=\widehat{BED}\)
mà \(\widehat{BED}=\widehat{ACD}\)(AC//BE)
nên \(\widehat{ACD}=\widehat{BDC}\)
cho hình thang ABCD (AB/CD) có AC=BD . Qua B kẻ đường thẳng song song với AC , cắt đường thẳng DC tại E :
a, chứng minh rằng tam giác BDE cân
b, chứng minh tam giác ACD= tam giác BDC
c, chúng minh hình thang ABCD là hình thang cân
a: Xét tứ giác ABEC có
AB//CE
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
Xét ΔBDE có BE=BD
nên ΔBDE cân tại B
b: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
c: Hình thang ABCD có AC=BD
nên ABCD là hình thang cân
Cho hình thang ABCD (AB//CD) có AC=BD. Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC tại E. Chứng minh:
a)Tam giác BDE là tam giác cân
b)Các tam giác ACD và BDC bằng nhau
c)ABCD là hình thang cân
Giup mình rồi kb nha!!!!
a, AB song song với CE(gt) nên góc ABC = góc ECB
AC song song với BE(gt) nên góc ACB = góc EBC
Tam giác ABC = Tam giác ECB (g.c.g) nên AC=BE (2 cạnh tương ứng)
Mà AC =BD (gt) do đó: BD =BE
Vậy tam giác BDE cân tại B
b, Tam giác BDE cân tại B (cmt) suy ra: góc BDC =góc E (t/c)
AC song song với BE(gt) nên góc ACD = góc E (đồng vị)
Tam giác ACD = tam giác BDC (c.g.c)
c, 2 tam giác bằng nhau trên suy ra: góc ADC = góc BCD
Vậy ABCD là hình thang cân (định nghĩa)
Cho hình thang ABCD (AB//CD)có AC=BC. Qua B kẻ đường thẳng// AC cắt đường thẳng DC tại E. CMR: a) tam giác BDE là tam giác cân. b) tam giác ACD=BDC.c) hình tah ng ABCD là hình thang cân
Chứng minh định lí " Hình thang có hai đường chéo bằng nhau thì hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng minh rằng:
a) Tam giác BDE là tam giác cân
b) Tg ACD=BDC.
c) Hình thang ABCD là hình thang cân
bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm
tg BDE cân tại B:
ta có:ACD=BAC(AB//CD)
mà ACD =BEC =>BEC=BAC
xét tg ABC va tg ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
ma `BEC=ACD(đồng vị)
=>ACD=BDC
xét tg ACD va tg BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tg ACD = tg BDC
=>ADC=BCD
=>ABCD la hình thang cân (đpcm)
Chứng minh định lí sau "Hình thang có 2 đường chéo bằng nhau là hình thang cân " qua bài toán sau: Cho hình thang ABCD (AB song song vớiCD) có Ab bằng BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng minh rằng :
a) Tam giác BDE là tan giác cân
b) Tam giác ACD bằng tam giác BDC
c) Hình thang ABCD là hình thang cân
a) Hình thang ABEC ( AB // CE ) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE (1)
Theo giả thiết AC = BD (2)
Từ (1) và (2) suy ra BE = BD do đó \(\Delta BDE\)cân
b) Do AC // BE nên \(\widehat{E}=\widehat{C_1}\left(3\right)\)
Mà tam giác BDE cân tại B ( câu a ) nên \(\widehat{E}=\widehat{D_1}\left(4\right)\)
Từ (3)(4) => \(\widehat{D_1}=\widehat{C_1}\)
* Xét 2 tam giác : ACD và BDC có :
DC chung
AC = BD ( gt )
\(\widehat{C_1}=\widehat{D_1}\left(cmt\right)\)
\(\Rightarrow\Delta ACD=\Delta BDC\left(c-g-c\right)\)
c) Theo ( c/m câu b ) ta có :
\(\Delta ACD=\Delta BDC\)
nên \(\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )
Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.
Cho hình thang ABCD (AB song song CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt BC tại E. Chứng minh:
a) Tam giác BDE cân
b) Tam giác ACB = Tam giác BDC
c) ABCD là hình thang cân