Cho hình thang vuông ABCD có góc A=góc B=90o và AD=2BC. Kẻ AH vuông góc với BD (H thuộc BD). Gọi I là trung điểm của HD. CMR CI vuông góc với AI
Cho hình thang vuông ABCD có góc A=góc B=90o và AD=2BC. kẻ AH vuông góc với BD. Gọi I là trung điểm của HD. cmr CI vuông góc với AI
cho hình thang vuông ABCD có A=B=90 độ và AD=2BC Kẻ AH vuông góc với BD(H thuộc BD) Gọi I là trung điểm của HD. Chứng minh CI vuông AI
Bài 9. Cho hình thang vuông ABCD, có = = 90o và AD = 2BC. Kẻ AH vuông góc với BD (H thuộc BD). Gọi I là trung điểm của HD.
Chứng minh rằng: CI ^ AI
Giải:
Gọi G là trung điểm AD. Suy ra GI là đường trung bình traong tam giác ADH => GI // AH.
Vẽ IJ // AD => Tứ giác AGIJ là hình bình hành => AG = IJ = BC => Tứ giác BCIJ cũng là hình bình hành.
Vì IJ // AD => IJ vuông góc với AB. Trong tam giác ABI thì J là giao điểm hai đường cao IJ và AH nên J là trực tâm => BJ vuông góc AI.
Mà BJ // CI (Do tứ giác BCIJ là hình bình hành) nên CI vuông góc với AI.
Cho hình thang vuông ABCD, có góc A= góc B=90 độ và AD=2BC, kẻ AH vuông góc với BD. Gọi I là trung điểm HD. Chứng minh CI vuông góc AI
cho hình thang vuông ABCD có góc A=90;góc B=90;AB=BC=1/2 AD.E là trung điểm của AD. a)tứ giác ANCE là hình gì?Vì sao? b) kẻ AH vuông góc BD(H thuộc BD).Gọi M,N lần lượt là trung điểm của HD,HA. tg BCMN là hình bình hành c)AM vuông góc MC
b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)
mà \(AB=BC=\dfrac{AD}{2}\)
nên AE=ED=AB=BC
Xét tứ giác AECB có
AE//CB
AE=CB
Do đó: AECB là hình bình hành
mà \(\widehat{EAB}=90^0\)
nên AECB là hình chữ nhật
mà AE=AB
nên AECB là hình vuông
Xét ΔHAD có
N là trung điểm của AH
M là trung điểm của HD
Do đó: MN là đường trung bình của ΔHAD
Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)
mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC
nên MN//BC và MN=BC
Xét tứ giác BCMN có
MN//BC
MN=BC
Do đó: BCMN là hình bình hành
Cho hình bình hành ABCD có AB>AC. Từ A kẻ AM vuông góc với BD tại M, từ B kẻ BN vuông góc với DC tại N.
a) CMR: tam giác AMB đồng dạng với tam giác BND
b)Lấy I thuộc ab sao cho AI=\(\dfrac{1}{3}\) AB. Gọi K là giao điểm của CI và DA. CI cắt BD tại E, A' đối xứng với A qua K. CMR: I là trọng tâm của tam giác ACA'
c) CMR: \(EC^2\) = EI.EK
Cứu mik câu b vói ạ
b: Xét ΔIAK và ΔIBC có
góc IAK=góc IBC
góc AIK=góc BIC
=>ΔIAK đồng dạng với ΔIBC
=>IK/IC=IA/IB=1/2
=>CI=2/3CK
Xét ΔCAA' có
CK là trung tuyến
CI=2/3CK
=>I là trọng tâm
Cho hình thang cân ABCD (AB // CD, AB < CD), biết AC vuông góc với BD . Gọi M, N lần lượt là trung điểm của AD và BC. Kẻ AH vuông góc với CD (H thuộc CD) biết AH=10cm . Khi đó, độ dài MN là
A.9cm B.10cm C.6cm D.8cm
Cho hình bình hành ABCD (AD<AB) Kẻ AH và CI vuông góc với BD. Gọi M là trung điểm của HI
a, Tứ giác AHCI là hình gì? Vì sao?
b,Chứng minh A đối xứng với C qua M
c, Đường thẳng đi qua D vuông góc với BC cắt CI tại N. Chứng minh AB vuông góc với BN
a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)
Do đó \(AH=CI\)
Mà AH//CI (⊥BD) nên AHCI là hbh
b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC
Do đó A đối xứng C qua M
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông