Cho tam giác ABC nhọn . đường trung tuyến AI và đường cao BD , CE . Qua A kẻ đường thẳng vuông góc AI ở A cắt BD,CE tại M và N . Gọi K và J là giao điểm của AI với BM , CN . Chứng minh JC.BM=BK.CN và AM=AN
Cho tam giác ABC có 3 góc nhọn , I là trung điểm BC , BD và CE là hai đường cao . Đường thẳng đi qua A vuông góc với IE cắt CE tại M , đường thẳng đi qua A vuông góc với ID cắt BD tại N . Gọi F và G là trung điểm của BM và CN , H là giao điểm của EF và GD . CHỨNG MINH AH VUÔNG GÓC VỚI ED
Cho tam giác ABC có 3 góc nhọn , I là trung điểm của BC , BD và CE là 2 đường cao .Đường thẳng đi qua A vuông góc với IE cắt CE tại M , Đường thẳng đi qua A vuông góc với ID cắt BD tại N . Gọi F và G là trung điểm của MB và CN , H là giao điểm của EF và GD . CHỨNG MINH AH VUÔNG GÓC VỚI ED
AM giao I
tam giac EBC vuong => EI =IC => goc CEI = ECI
tam giac TEM dong dang tam giac TAE => TEM = TAE
IEC = TEM doi dinh
=> TAE=ICE
tt => IME = IBE => AEM dong dang CEB (g-g)
=> ty le thuc
=> EMB dong dang EAC
=> BME=CAE
tam giac EMB vuong => EF = FM => FME =FEM
FEM = CEH (dd)
=> EAC=HEC. => EH vuong goc vs AE
tt => DH vuong goc vs AE
=> H la truc tam cua AED
=> AH vuong goc ED
công minh nghĩ cả buổi tối. tích cho cái nhé
Cho tam giác ABC có 3 góc nhọn , I là trung điểm của BC , BD và CE là 2 đường cao . Đường thẳng đi qua A vuông góc với IE cắt CE tại M , đường thẳng đi qua A vuông góc với ID cắt BD tại N . Gọi F và G là trung điểm của MB và CN , H là giao điểm của EF và GD . CHỨNG MINH AH VUÔNG GÓC VỚI ED
Cho tam giác nhọn abc. Đường cao bd và ce. Đường phân giác bm của tam giác abd và đường phân giác cn của tam giác ace. Ce giao bm tại h, cn giao bd tại k.
a) Chứng minh cn vuông góc với bm
b) chứng minh nmkh là hình thoi
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
a: Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>H,M,K thẳng hàng
b: BHCK là hình thoi khi BH=HC
=>AB=AC
Cho tam giác nhọn ABC, các đường cao BD và CE cắt nhau ở H. Gọi M là trung điểm AB.
Đường thẳng qua C và vuông góc với MD cắt BD ở K. Chứng minh rằng:
a) CA là tia phân giác của góc HCK
b) CH = CK
Cho tam giác ABC nhọn. Đường cao BD, CE giao nhau tại H. I là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với IH cắt AB và AC tại M và N . Chứng minh IM=IN
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC nhọn. Đường cao BD, CE giao nhau tại H. I là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với IH cắt AB và AC tại M và N . Chứng minh HM=HN