Cho parapol (P) và (d) có phương trình lần lượt là y=mx^2 và y =(m-2)x +m-1 (m là tham số, m#0)
a. Với m =-1 tìm tọa độ giao điểm của (d) và (p)
b. CMR với mọi m≠0 đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt
1)cho hàm số y=(1-m)x+m+2(với m là tham số và m≠1)có đồ thị là đường thẳng (d)
a.tìm m để hàm số dồng biến
b. tìm m để (d) cắt trục Ox,Oy lần lượt tại hai điểm A,B sao cho tam giác AOB cân
2)Cho hệ phương trình mx+4y=9
x+my =8( m là tham số)
a. giải hệ phương trình với m =1
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y)thỏa mãn hệ thức 2x+y+38/m2-4=3
Bài 1:
a: Để hàm số y=(1-m)x+m+2 đồng biến trên R thì 1-m>0
=>-m>-1
=>m<1
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(1-m\right)x+m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(1-m\right)x=-m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+2}{m-1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\left|\dfrac{m+2}{m-1}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)x+m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)\cdot0+m+2=m+2\end{matrix}\right.\)
=>\(OB=\left|m+2\right|\)
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{\left|m+2\right|}{\left|m-1\right|}=\left|m+2\right|\)
=>\(\left|m+2\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)
=>\(\left[{}\begin{matrix}m+2=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m-1=1\\m-1=-1\end{matrix}\right.\)
=>\(m\in\left\{0;2;-2\right\}\)
Câu 1: Cho hai đường thẳng (d):y=mx+1 và (d'):y=m2x +m+1, trong đó m là tham số. Tìm m để (d) và (d') song song với nhau
Câu 2: Cho phương trình: x2-2mx+m2+2m+2=0 (m là tham số). Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\dfrac{2}{x_1}+\dfrac{2}{x_2}=x_1+x_2\)
cho parabol (P)và đường thẳng (d) có phương trình lần lượt là \(y=mx^2\) và \(y=\left(m+2\right)x+m-1\) ( m là tham số,\(m\ne0\)
a) với m = -1 tìm tọa độ giao điểm của (d) và (P)
b) CMR với mọi \(m\ne0\) đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt
a, Với m = -1 thì \(\hept{\begin{cases}\left(P\right)y=-x^2\\\left(d\right)y=x-2\end{cases}}\)
Tọa độ giao điểm của (d) và (P) là nghiệm của hệ phương trình :
\(\hept{\begin{cases}y=-x^2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}-x^2=x-2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=x-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-4\end{cases}}}\)
Vậy tọa độ giao điểm (d) và (P) với m = -1 là (1;-1) ; (-2;-4)
b, Phương trình hoành độ giao điểm của (d) và (P) là
\(mx^2=\left(m+2\right)x+m-1\)
\(\Leftrightarrow mx^2-\left(m+2\right)x-m+1=0\)
Vì m khác 0 nên pt trên là pt bậc 2
Khi đó \(\Delta=\left[-\left(m+2\right)\right]^2-4m\left(-m+1\right)\)
\(=m^2+4m+4+4m^2-4m\)
\(=5m^2+4>0\)
Nên pt trên luôn có 2 nghiệm p/b
hay (d) luôn cắt (P) tại 2 điểm phân biệt với m khác 0
cho hệ phương trình y = 2m - mx và x = 1 + m - my (m là tham số). Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x > 2 ; y > 1
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x ^ 2 và đường thẳng (d) có phương trình (d) v = 2x + m ^ 2 - 2m (với m là tham số)
Xác định tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là x1, và x2, thỏa mãn điều kiện x1 ^ 2 + 2x2 = 3m
PTHHĐGĐ là:
x^2-2x-m^2+2m=0
Δ=(-2)^2-4(-m^2+2m)
=4+4m^2+8m=(2m+2)^2
Để phương trình có hai nghiệm phân biệt thì 2m+2<>0
=>m<>-1
x1^2+2x2=3m
=>x1^2+x2(x1+x2)=3m
=>x1^2+x2^2+x1x2=3m
=>(x1+x2)^2-x1x2=3m
=>2^2-(-m^2+2m)=3m
=>4+m^2-2m-3m=0
=>m^2-5m+4=0
=>m=1 hoặc m=4
cho parapol (P): y=\(\frac{1}{2}x^2\) và đường thẳng (d):y=x+m
tìm m để đường thẳng (d) cắt parapol (P) tại hai điểm phân biệt có hoành độ lần lượt là x1:x2 thỏa mãn \(x1^2+x2^2=5m\)
cho hệ phương trình:{mx-y=1 và x+my=2
1,giải hệ phương trình theo tham số m
2,gọi nghiệm của hệ phương trình là(x,y). Tìm các giá trị m để x+y=1
3, tìm đẳng thức liên hệ giưa x và y không phụ thuộc vào m
cho hệ phương trình:
x+2y=2
mx-y=m(m là tham số)
a) giải và biện luận hệ phương trình đã cho theo m
b) Trong trg hợp hệ phương trình có 1 nghiệm duy nhất.(x,y).Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m
cho hệ phương trình x+my=3m
mx-y=m2-2 ( m là tham số)
a. giải phương trình với m=-1
b. tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn (x-1)(m-y),0
a: Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)