cho M = \(\frac{2}{3}+\frac{5}{6}+\frac{9}{10}+...+\frac{4949}{4950}\).Chung minh 97<M<98
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+...+\frac{9901}{9900}\)
\(B=\frac{2}{3}+\frac{5}{6}+\frac{9}{10}+\frac{14}{15}+...+\frac{4949}{4950}\)
\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+...+\frac{9901}{9900}=\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+\left(1+\frac{1}{4.5}\right)+...+\left(1+\frac{1}{99.100}\right)\)\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=98+\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=98+\frac{49}{100}=98\frac{49}{100}\)
Cho M =\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}vaN=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
a) Tinh tich M.N
b) chung minh M<N
c) Chung minh M < \(\frac{1}{10}\)
c) \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{1}{2}.\frac{4}{4}.\frac{6}{6}...\frac{100}{100}=\frac{1}{2}\)
a) M . N = \(\left(\frac{1}{2.}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)=\frac{1.2.3.4....100}{2.3.4.5...101}=\frac{1}{101}\)
Cho \(A=\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+\frac{15^3}{28}-\frac{17^3}{36}+...+\frac{199^3}{4950}\)
So sánh A với 814
Ta có:
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+\frac{11^3}{30}-\frac{13^3}{42}+\frac{15^3}{56}-\frac{17^3}{72}+...+\frac{199^3}{9900}\)
\(=3^2.\left(1+\frac{1}{2}\right)-5^2.\left(\frac{1}{2}+\frac{1}{3}\right)+7^2.\left(\frac{1}{3}+\frac{1}{4}\right)-9^2.\left(\frac{1}{4}+\frac{1}{5}\right)+...+199^2.\left(\frac{1}{99}+\frac{1}{100}\right)\)
\(=3^2+\left(\frac{3^2}{2}-\frac{5^2}{2}\right)-\left(\frac{5^2}{3}-\frac{7^2}{3}\right)+\left(\frac{7^2}{4}-\frac{9^2}{4}\right)-\left(\frac{9^2}{5}-\frac{11^2}{5}\right)+...+\left(\frac{197^2}{99}-\frac{199^2}{99}\right)+\frac{199^2}{100}\)
\(=3^2-8+8-8+...+8+\frac{199^2}{100}=3^2+\frac{199^2}{100}< 3^2+\frac{199.200}{100}=9+398=407\)
\(\Rightarrow A< 407.2=814\)
A=\(\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+...+\frac{1993^3}{4950}\). So sánh A và B=814
Cho \(A=\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+\frac{15^3}{28}-\frac{17^3}{36}+...+\frac{199^3}{4950}\)
So sánh \(A\) với 814.
Sử dụng khá nhiều kiến thức hằng đẳng thức lớp 8, lớp 7 bó tay
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+...-\frac{197^3}{9702}+\frac{199^3}{9900}\)
\(\frac{A}{2}=\frac{3^3}{1.2}-\frac{5^3}{2.3}+\frac{7^3}{3.4}-\frac{9^3}{4.5}+...+\frac{199^3}{99.100}\)
\(\frac{A}{2}=3^3\left(1-\frac{1}{2}\right)-5^3\left(\frac{1}{2}-\frac{1}{3}\right)+7^3\left(\frac{1}{3}-\frac{1}{4}\right)-...+199^3\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{2}=3^3-\frac{3^3+5^3}{2}+\frac{5^3+7^3}{3}-\frac{7^3+9^3}{4}+...+\frac{197^3+199^3}{99}-\frac{199^3}{100}\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}-\left(16.2^2+12\right)+\left(16.3^2+12\right)-\left(16.4^2+12\right)+...+\left(16.99^2+12\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(3^2-2^2+5^2-4^2+7^2-6^2+...+99^2-98^2\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(2+3+4+5+...+98+99\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(99.50-1\right)\)
\(\Rightarrow A=16.99.100-\frac{199^3}{50}+22\) (đến đây bấm máy ra kết quả so sánh cũng được)
\(\Rightarrow A=\frac{2^3.100^2\left(100-1\right)-199^3}{50}+22\)
\(A=\frac{200^3-199^3-2.200^2}{50}+22\)
\(A=\frac{200^2+200.199+199^2-2.200^2}{50}+22\)
\(A=\frac{199^2-200^2+200.199}{50}+22\)
\(A=\frac{-199-200+200.199}{50}+22=\frac{199^2}{50}+18\)
\(A< \frac{199.200}{50}+18=814\)
Vậy \(A< 814\)
Tính nhanh: \(\frac{5}{3}+\frac{5}{6}+\frac{5}{10}+\frac{5}{15}+......+\frac{5}{4950}\)
CHO M= \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)
N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
a: CHUNG MINH M<N
b: TIM M.N
c: CHUNG MINH M<\(\frac{1}{10}\)
M = \(\frac{1}{3}.\frac{5}{7}.\frac{9}{11}....\frac{97}{99}\)
Chứng minh M < \(\frac{1}{10}\)
Cho
\(A=\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+\frac{15^3}{28}-\frac{17^3}{36}+...+\frac{199^3}{4950}\)
So sánh A với 814.
Mọi người giúp em câu này với ạ! Em cảm ơn!