f) \(\frac{x^2-x}{x+1}\)
Bài 4 Xét dấu biểu thức sau
1 , \(f\left(x\right)=x^2-3x-2-\frac{8}{x^2-3x}\)
2 , \(f\left(x\right)=\frac{1}{x+1}-\frac{1}{x}-\frac{1}{2}\)
3 , \(f\left(x\right)=\frac{x^2-4x+3}{3-2x}-1+x\)
4 , \(f\left(x\right)=\frac{x^2-1}{\left(x^2-3\right)\left(-3x^2+2x+8\right)}\)
5 , \(f\left(x\right)=x^4-5x^2+2x+3\)
6 , \(f\left(x\right)=\frac{x^2+4x+15}{x^2-1}-\frac{x-3}{x+1}-\frac{x-2}{1-x}\)
1.
\(f\left(x\right)=\frac{\left(x^2-3x\right)^2-2\left(x^2-3x\right)-8}{x^2-3x}=\frac{\left(x^2-3x-4\right)\left(x^2-3x+2\right)}{x^2-3x}\)
\(f\left(x\right)=\frac{\left(x+1\right)\left(x-1\right)\left(x-2\right)\left(x-4\right)}{x\left(x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{0;3\right\}\)
\(f\left(x\right)=0\Rightarrow x=\left\{-1;1;2;4\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -1\\0< x< 1\\2< x< 3\\x>4\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}-1< x< 0\\1< x< 2\\3< x< 4\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{2x-2\left(x+1\right)-x\left(x+1\right)}{2x\left(x+1\right)}=\frac{-x^2-x-2}{2x\left(x+1\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{-1;0\right\}\)
\(f\left(x\right)>0\Rightarrow-1< x< 0\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -1\\x>0\end{matrix}\right.\)
3.
\(f\left(x\right)=\frac{x^2-4x+3+\left(x-1\right)\left(3-2x\right)}{3-2x}=\frac{-x^2+x}{3-2x}=\frac{x\left(1-x\right)}{3-2x}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\frac{3}{2}\)
\(f\left(x\right)=0\Rightarrow x=\left\{0;1\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}0< x< 1\\x>\frac{3}{2}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< 0\\1< x< \frac{3}{2}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(2-x\right)\left(3x+4\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\pm\sqrt{3};-\frac{4}{3};2\right\}\)
\(f\left(x\right)=0\Rightarrow x=\pm1\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}-\sqrt{3}< x< -\frac{4}{3}\\-1< x< 1\\\sqrt{3}< x< 2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -\sqrt{3}\\-\frac{4}{3}< x< -1\\1< x< \sqrt{3}\\x>2\end{matrix}\right.\)
5.
\(f\left(x\right)=x^4-x^3-x^2+x^3-x^2-x-3x^2+3x+3\)
\(=x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)-3\left(x^2-x-1\right)\)
\(=\left(x^2+x-3\right)\left(x^2-x-1\right)\)
Vậy:
\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=\frac{-1\pm\sqrt{13}}{2}\\x=\frac{1\pm\sqrt{5}}{2}\end{matrix}\right.\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< \frac{-1-\sqrt{13}}{2}\\\frac{1-\sqrt{5}}{2}< x< \frac{1+\sqrt{5}}{2}\\x>\frac{-1+\sqrt{13}}{2}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}\frac{-1-\sqrt{13}}{2}< x< \frac{1-\sqrt{5}}{2}\\\frac{1+\sqrt{5}}{2}< x< \frac{-1+\sqrt{13}}{2}\end{matrix}\right.\)
6.
\(f\left(x\right)=\frac{x^2+4x+15-\left(x-3\right)\left(x-1\right)+\left(x-2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x^2+7x+10}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x+5\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\pm1\)
\(f\left(x\right)=0\Rightarrow x=\left\{-2;-5\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -5\\-2< x< -1\\x>1\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}-5< x< -2\\-1< x< 1\end{matrix}\right.\)
cho hàm số f(x) xác định với mọi x khác 0 biết f(1)=1;f(x1+x2)=f(x1)+f(x2) với mọi x1,x2,x1+x2 khác 0
và f(\(\frac{1}{x}\)) =\(\frac{1}{x^2}\).f(x)
Chứng minh f(\(\frac{5}{7}\))=\(\frac{5}{7}\)
tính f(\(\frac{2}{3}\))
Cho hàm số f(x) xác định với mọi x thỏa mãn:
a) f(1) = 1
b)\(f\left(\frac{1}{x}\right)=\frac{1}{x^2}\)
c) f(x1 + x2) = f(x1) + f(x2)
CMR: \(f\left(\frac{5}{2}\right)=\frac{5}{2}\)
Cho hàm số f(x)\(=\frac{x}{2^x}\).Tìm \(x\inℕ^∗\)biết \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{2^{x+1}-x}{2^x}-\frac{1}{512}\)
Bài 2 Xét dấu biểu thức sau
1 , \(f\left(x\right)=x^2-\sqrt{3}x+\frac{3}{4}\)
2 , \(f\left(x\right)=-x^2+3x-2\)
3 , \(f\left(x\right)=x^4-4x+1\)
4 , \(f\left(x\right)=\frac{3x+7}{x^2-x-2}\)
5 , \(f\left(x\right)=\frac{x+2}{3x+1}-\frac{x-2}{2x-1}\)
6 , \(f\left(x\right)=\frac{1}{x^2-5x+4}-\frac{1}{x^2-7x+10}\)
7 , \(f\left(x\right)=\left(x-1\right)\left(x-3\right)-\frac{18}{x^2-4x-4}\)
8 , \(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)
9 , \(f\left(x\right)=\left(x+3\right)\left(-4x^2+9x-2\right)\)
10 , \(f\left(x\right)=\frac{10-x}{5+x^2}-\frac{1}{2}\)
Cho hàm số y=f(x)=\(\frac{1}{2}x^{100}\)+\(\frac{1}{2}x^{100}+\frac{1}{2}x^{99}+\frac{1}{2}x^{98}+....+\frac{1}{2}x^2+\frac{1}{2}x+1\)
a)f\(\left(\frac{-1}{2}\right)\)
b)f\(\left(-2\right)\)
Cho mình sửa lại đề nhá:Chỉ có 1 cái \(\frac{1}{2}x^{100}\)thôi.Xin lỗi
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\cdot\frac{x-1}{2x+2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2x-2}{2x+2}=\frac{2009}{2011}\)
Bạn làm nốt.Nhân chéo là ra
\(\left(x-1\right)f\left(x\right)=\left(x+4\right)\cdot f\left(x+8\right)\)
Với \(x=1\) ta có:
\(\left(1-1\right)\cdot f\left(1\right)=\left(1+4\right)\cdot f\left(9\right)\)
\(\Rightarrow5\cdot f\left(9\right)=0\)
\(\Rightarrow f\left(9\right)=0\)
Vậy \(x=9\)
Thay \(x=-4\) vào ta được:
\(\left(-4-1\right)\cdot f\left(-4\right)=0\cdot f\left(4\right)\)
\(\Rightarrow f\left(-4\right)=0\)
Vậy \(x=-4\)
\(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm là 9;-4
Xét dấu f(x) biết:
1) f(x) =\(\frac{5}{2x-1}+\frac{3}{5-2x}\)
2) f(x) = \(\frac{2}{21-3x}-\frac{1}{x^2+x-2}\)
cho f(x) xác định với mọi x khác 0 T/m
a,f(1) = 1
b, f(\(\frac{1}{x}\)) = \(\frac{1^{ }}{x^2}\)* f(x)
c, f(x1+x2) = f(x1) + f(x2) vs x1,x2 khác 0 và x1+ x2 khác 0
Cm f(\(\frac{5}{7}\)) = \(\frac{5}{7}\)
a) tìm x biết \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
b) cho biết (x-1)f(x)=(x+4)f(x+8) với mọi x
chứng minh f(x) có ít nhất 2 nghiệm