Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
alibaba nguyễn
31 tháng 3 2021 lúc 13:53

Đề phải là số thực không âm mới đúng

Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Nguyệt Băng Vãn
Xem chi tiết
Võ Thị Quỳnh Giang
15 tháng 11 2017 lúc 16:38

ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)

\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\)    (vì abc=1)     (*)

Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\)   (vì abc=1)

=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\)   (**)

Từ (*), (**)=> đpcm

Phan Gia Huy
12 tháng 2 2020 lúc 16:07

Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3

\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

Tương tự rồi cộng lại:

\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1

Khách vãng lai đã xóa
Kiệt Nguyễn
31 tháng 5 2020 lúc 16:55

Ta cần chứng minh \(\Sigma\frac{a}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow\Sigma\left[4a\left(c+1\right)\right]\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\Sigma ab+4\Sigma a\ge3abc+3\Sigma ab+3\Sigma a+3\)

\(\Leftrightarrow ab+bc+ca+a+b+c\ge6\)(*)

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta được:

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)\(a+b+c\ge3\sqrt[3]{abc}=3\)(Do theo giả thiết thì abc = 1)

Suy ra (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Nguyễn Hải Minh
Xem chi tiết
Lê Tài Bảo Châu
9 tháng 8 2021 lúc 16:42

Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)

\(\ge4ab+2ac+a^2\)

\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)

\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)

\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)

CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )

Khách vãng lai đã xóa
Nguyễn Linh Chi
Xem chi tiết
tth_new
13 tháng 11 2019 lúc 18:43

Bài này cần chú ý: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3=\frac{\left(a-b\right)^2}{ab}+\frac{\left(a-c\right)\left(b-c\right)}{ac}\)

Và \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}=\frac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b+2c\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Thêm 3 vào 2 vế ta cần chứng minh:

\(\frac{2}{1-a}+\frac{2}{1-b}+\frac{2}{1-c}\le2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{2}\) (chia hai vế cho 2 và chú ý 1 =a + b + c)

\(\Leftrightarrow\frac{3}{2}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b+2c\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{\left(a-b\right)^2}{ab}+\frac{\left(a-c\right)\left(b-c\right)}{ac}\)

\(\Leftrightarrow\left(a-b\right)^2\left(\frac{1}{ab}-\frac{1}{\left(a+c\right)\left(b+c\right)}\right)+\left(\frac{1}{ac}-\frac{a+b+2c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-c\right)\left(b-c\right)\ge0\)

Quy đồng mỗi cái ngoặc to phía sau là thấy nó > 0:D

Giả sử c = min{a,b,c} như vậy (a-c)(b-c)\(\ge0\) chúng ta có đpcm.

Is that true?

Khách vãng lai đã xóa
Thắng Nguyễn
13 tháng 11 2019 lúc 20:39

WLOG \(b=mid\left\{a,b,c\right\}\). Áp dụng một bổ đề trong một bài giải của alibaba nguyễn trong câu hỏi của Neet ở học 24. Mọi người có thể tự chứng minh để nhớ lâu hoặc ai cần có thể hỏi ổng

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\) với a,b,c>0

Khi đó ta cần chứng minh \(2\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)+2\ge\frac{2a+b+c}{b+c}+\frac{2b+c+a}{c+a}+\frac{2c+a+b}{a+b}\)

\(\Leftrightarrow\frac{a+b}{b+c}+\frac{b+c}{a+b}-\frac{1}{2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Leftrightarrow\frac{b}{b+c}+\frac{b}{a+b}-\frac{1}{2}\ge\frac{b}{c+a}\)

\(\Leftrightarrow\frac{\left(a-b\right)\left(b-c\right)\left(a+c+2b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)*đúng với \(b=mid\left\{a,b,c\right\}\)*

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
12 tháng 6 2020 lúc 11:28

Lục vui câu hỏi của cô Chi thấy vài bài ngon mà mấy God dùng đao to vãi :))

\(\frac{1+a}{1-a}=\frac{1-a+2a}{1-a}=1+\frac{2a}{1-a}=1+\frac{2a}{b+c}\)

Khi đó BĐT cần chứng minh tương đương với:

\(3+\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\le2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{3}{2}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\Leftrightarrow\frac{ac}{b\left(b+c\right)}+\frac{bc}{a\left(a+b\right)}+\frac{ab}{c\left(c+a\right)}\ge\frac{3}{2}\)

Mặt khác:

\(LHS=\Sigma\frac{ac}{b\left(b+c\right)}=\Sigma\frac{a^2c^2}{abc\left(b+c\right)}\ge\frac{\left(ab+bc+ca\right)^2}{\Sigma abc\left(b+c\right)}=\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\)

Ta cần chứng minh \(\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\ge\frac{3}{2}\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)

Tuy nhiên đây là bổ đề quen thuộc

Vậy ta có đpcm

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
Xem chi tiết
Trần Nguyễn Ngọc Hưng
Xem chi tiết
Nguyễn Đăng Nhân
19 tháng 2 2022 lúc 17:24

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

Khách vãng lai đã xóa
Nguyễn Minh Thư
21 tháng 2 2022 lúc 14:38

sai r bạn ơi ko biết còn đòi

Khách vãng lai đã xóa
DOC CO CAU BAI
Xem chi tiết
Thắng Nguyên
Xem chi tiết
Kiệt Nguyễn
28 tháng 8 2020 lúc 9:36

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

Khách vãng lai đã xóa