Chứng minh rằng: \(\frac{1}{2^2}\)+\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
chứng minh rằng\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+.......+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
chứng minh rằng:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+.......+\frac{1}{100^2}< \frac{1}{4}\)
Ta có: \(\frac{1}{5^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{100^2}< \frac{1}{99.100}\)
Cộng vế với vế ta được: \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)(1)
Tương tự: \(\frac{1}{5^2}>\frac{1}{5.6};\frac{1}{6^2}>\frac{1}{6.7};...;\frac{1}{100^2}>\frac{1}{100.101}\)
Cộng vế với vế ta được \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)(2)
Từ (1) và (2) =>đpcm
Chứng minh rằng : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Mk làm câu a thôi nhé :)
Vì \(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(=>\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(< \)\(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)(1)
Vì \(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
...
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(=>\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}\)(2)
Từ (1) và (2) => ĐPCM
Chứng minh rằng: \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}< \frac{1}{2}\)
Ta có:
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Mà \(\frac{49}{100}< \frac{1}{2}\)
Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ta có:\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)(1)
Xét\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)(2)
Mà\(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)(3)
Từ (1), (2), (3)\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)
Vậy...
Linz
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
\(Ta\) \(có : \)
\(1 / 5^2 + 1 /6^2 + ... + 1 /100^2 < 1 /4.5\)\(+ 1 / 5 .6 + ... + 1 / 99 .100\)
\(Mà ta có:\)\(1 / 4 .5 + 1 / 5 .6 + ... + 1 / 99 .100\)
\(\Rightarrow\)\(1 / 4 - 1 / 5 + 1 / 5 - 1 / 6 + ... +\)\(1 / 99 - 1 / 100\)
\(\Rightarrow\)\(1 / 4 - 1 / 100\) \(< 1 / 4\)
\(Nên 1 / 5^2 + 1 /6^2 + ...+ 1 / 100^2 < 1 / 4\)
Tương tự chứng minh tiếp nhé 😘😘
B=1/5^2+1/6^2+....+1/100^2.1/6<B<1/4
Chứng minh rằng:
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
C/m<1/4
t\(n^2>n\left(n-1\right)=>\frac{1}{n^2}<\frac{1}{n\left(n-1\right)}\)
\(\frac{1}{5^2}<\frac{1}{4.5};\frac{1}{6^2}<\frac{1}{5.6};\frac{1}{100^2}<\frac{1}{99.100}\)
\(\frac{1}{4.5}+..+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}.ok\)
CM>1/6
\(n^2\frac{1}{n\left(n+1\right)}\)
\(\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{5}>\frac{1}{6}\)OK
doan cuoi
\(\frac{1}{5}-\frac{1}{101}=\frac{96}{5.101}>\frac{96}{5.102}=\frac{1.}{6}.\frac{96}{85}>\frac{1}{6}ok\)
Bạn ngonhuminh giỏi quá, làm đúng rồi
Bạn Lê Thanh Lan làm theo cách của bạn ấy nha
Ai thấy mình nói đúng thì nha
Chứng minh rằng: \(\frac{1}{6}<\frac{1}{^{5^2}}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}+...+\frac{1}{100^2}<\frac{1}{4}\)
ta có :\(\frac{1}{5^2}<\frac{1}{4.5}\)
\(\frac{1}{6^2}<\frac{1}{5.6}\)
\(\frac{1}{7^2}<\frac{1}{6.7}\)
.....
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow A<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\) (1)
Ta có : \(\frac{1}{5.6}<\frac{1}{5^2}\)'
\(\frac{1}{6.7}<\frac{1}{6^2}\)
....\(\frac{1}{100.101}<\frac{1}{100^2}\)
\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\) <A
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{101}\) <A
\(\frac{1}{5}-\frac{1}{101}\) <A
mà \(\frac{96}{5.101}=\frac{96}{505}>\frac{96}{576}\)
hay \(A>\frac{1}{6}\) (2)
từ (1); và (2) suy ra \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+..+\frac{1}{100^2}<\frac{1}{4}\) (đpcm)
đây là cách dễ hiểu nhất nhé
bài này dễ lắm 8h30' mình giải cho đang bận
Chứng minh rằng :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}...+\frac{1}{100^2}<\frac{3}{4}\)
Ta có: 1/2^2 < 1/1.2
1/3^2 < 1/2.3
.........................
.......................................
1/100^2 < 1/99.100
Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4
Ta có: 1/2^2 < 1/1.2
1/3^2 < 1/2.3
.........................
.......................................
1/100^2 < 1/99.100
Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4