\(\frac{x+8}{12}\)+\(\frac{x+9}{11}\)+\(\frac{x+10}{10}\)+3=0
Tìm x,biết
\(\frac{x+8}{12}+\frac{x+9}{11}+\frac{x+10}{10}+3=0\)0
Ta có :\(\frac{x+8}{12}+\frac{x+9}{11}+\frac{x+10}{10}+3=0\)
=> \(\left(\frac{x+8}{12}+1\right)+\left(\frac{x+9}{11}+1\right)+\left(\frac{x+10}{10}+1\right)=0\)
=> \(\frac{x+20}{12}+\frac{x+20}{11}+\frac{x+20}{10}=0\)
=> \(\left(x+20\right)\left(\frac{1}{12}+\frac{1}{11}+\frac{1}{10}\right)=0\)
Vì \(\frac{1}{12}+\frac{1}{11}+\frac{1}{10}\ne0\)
=> x + 20 = 0
=> x = -20
Vậy x = -20
\(\frac{x+8}{12}+\frac{x+9}{11}+\frac{x+10}{10}+3=0\)
\(\Leftrightarrow\left(\frac{x+8}{12}+1\right)+\left(\frac{x+9}{11}+1\right)+\left(\frac{x+10}{10}+1\right)=0\)
\(\Leftrightarrow\frac{x+20}{12}+\frac{x+20}{11}+\frac{x+20}{10}=0\)
\(\Leftrightarrow\left(x+20\right)\left(\frac{1}{12}+\frac{1}{11}+\frac{1}{10}\right)=0\)
Vì \(\frac{1}{12}+\frac{1}{11}+\frac{1}{10}\ne0\)
\(\Rightarrow x+20=0\Rightarrow x=-20\)
cái bên vế phải chả hiểu là j ?? Tớ tạm đặt là \(\alpha\) nhé ( \(\alpha\)là 1 hằng số )
pt <=> \(\left(\frac{x+8}{12}+1\right)+\left(\frac{x+9}{11}+1\right)+\left(\frac{x+10}{10}+1\right)=\alpha\)
<=> \(\frac{x+20}{12}+\frac{x+20}{11}+\frac{x+20}{10}=\alpha\)
<=> \(\left(x+20\right)\left(\frac{1}{12}+\frac{1}{11}+\frac{1}{10}\right)=\alpha\)
<=> \(\frac{\left(x+20\right).181}{660}=\alpha\)
<=> \(x=\frac{660\alpha}{181}-20\)
Bạn tự thay \(\alpha\)là 1 số nào tùy ý cũng sẽ tìm ngay ra x thôi
\(\frac{X-6}{7}+\frac{X-7}{8}+\frac{X-8}{9}=\frac{X-9}{10}+\frac{X-10}{11}+\frac{X-11}{12}\)
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và \(5x+y-2z=28\)
1. Tìm x:
a;\(\frac{x+1}{3}=\frac{x-2}{4}\)
b;\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
c;\(\frac{x+3}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
a) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> (x+1).4 = (x - 2) . 3
=> 4x + 4 = 3x - 6
=> 4x - 3x = - 6 - 4
=> x = - 10
b) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
\(\Rightarrow\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}=\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}-\frac{x+1}{12}\) = 0
\(\Rightarrow\left(x+1\right).\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)\)
Vì \(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\ne0\) nên x + 1 =0
=> x = -1
c) Xem lại đề
TIM X:\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
x = -1
ai tk mk
mk tk lại
hứa luôn
thank nhiều
Cho \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\). Tìm x.
Công mỗi phân số cho 1 .....................
mỗi hạng tử ở 2 vế cộng với 1 (có nghĩa là cộng 2 vế với 3 xong chia đều ra 3 hạng tử mỗi hạng tử cộng với 1)
Sau đó sẽ dẫn đến tất cả các hạng tử đều có chung tử số rồi nhóm tử ra ngoài là được
\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
Cộng mỗi p/s cho 1,ta đc:
\(\frac{x-6}{7}+1+\frac{x-7}{8}+1+\frac{x-8}{9}+1=\frac{x-9}{10}+1+\frac{x-10}{11}+1+\frac{x-11}{12}+1\)
\(\Leftrightarrow\frac{x-6+7}{7}+\frac{x-7+8}{8}+\frac{x-8+9}{9}=\frac{x-9+10}{10}+\frac{x-10+11}{11}+\frac{x-11+12}{12}\)
\(\Leftrightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\left(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\right)=0\)
\(\Leftrightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}-\frac{x+1}{12}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
Vì \(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\ne0\)
=>x+1=0
=>x=-1
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)
\(ĐKXĐ:x\ne3;x\ne5;x\ne4;x\ne6\)
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Rightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)
\(\Rightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}=0\left(1\right)\end{cases}}\)
\(\left(1\right)\Rightarrow\frac{1}{x-3}+\frac{1}{x-6}=\frac{1}{x-5}+\frac{1}{x-4}\)
\(\Rightarrow\frac{2x-9}{\left(x-3\right)\left(x-6\right)}=\frac{2x-9}{\left(x-5\right)\left(x-4\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\left(tm\right)\\\left(x-3\right)\left(x-6\right)=\left(x-5\right)\left(x-4\right)\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow x^2-9x+18=x^2-9x+20\)
\(\Leftrightarrow0=2\left(L\right)\)
Vậy pt có 2 nghiệm \(\left\{0;\frac{9}{2}\right\}\)
Tìm x biết
a) x+2x+3x+4x+...+100x=-213
b)\(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
c)3(x-2)+2(x-1)=10
d)\(\frac{x+1}{3}=\frac{x-2}{4}\)
e)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
f)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) x + 2x + 3x + ... +100x = -213
=> x . (1 + 2 + 3 +... + 100) = - 213
=> x . 5050 = -213
=> x = - 213 : 5050
=> x = -213/5050
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
=> \(\frac{1}{2}x-\frac{1}{4}x=\frac{1}{3}-\frac{1}{6}\)
=> \(x.\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{6}\)
=> \(x.\frac{1}{4}=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{1}{4}\)
=> \(x=\frac{2}{3}\)
c) 3(x-2) + 2(x-1) = 10
=> 3x - 6 + 2x - 2 = 10
=> 3x + 2x - 6 - 2 = 10
=> 5x - 8 = 10
=> 5x = 10 + 8
=> 5x = 18
=> x = 18:5
=> x = 3,6
d) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> \(4\left(x+1\right)=3\left(x-2\right)\)
=>\(4x+4=3x-6\)
=> \(4x-3x=-4-6\)
=> \(x=-10\)
Giải các phương trình sau:
a) \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
b)\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
a/ ĐKXĐ: \(x\ne\left\{8;9;10;11\right\}\)
\(\frac{8}{x-8}+1+\frac{11}{x-11}+1=\frac{9}{x-9}+1+\frac{10}{x-10}+1\)
\(\Leftrightarrow\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)
\(\Leftrightarrow x\left(\frac{1}{x-8}-\frac{1}{x-9}+\frac{1}{x-11}-\frac{1}{x-10}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-9}-\frac{1}{x-8}=\frac{1}{x-11}-\frac{1}{x-10}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{1}{\left(x-9\right)\left(x-8\right)}=\frac{1}{\left(x-11\right)\left(x-10\right)}\)
\(\Leftrightarrow x^2-17x+72=x^2-21x+110\)
\(\Rightarrow x=\frac{19}{2}\)
b/ ĐK: \(x\ne\left\{3;4;5;6\right\}\)
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-3}-\frac{1}{x-5}=\frac{1}{x-4}-\frac{1}{x-6}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\frac{-2}{\left(x-3\right)\left(x-5\right)}=\frac{-2}{\left(x-4\right)\left(x-6\right)}\)
\(\Leftrightarrow x^2-8x+15=x^2-10x+24\)
\(\Rightarrow x=\frac{9}{2}\)
\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)
\(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
a) Đk: x \(\ne\)-2
Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)
<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10
<=> -4x - 8 = 5x + 10
<=> -4x - 5x = 10 + 8
<=> -9x = 18
<=> x = -2 (ktm)
=> pt vô nghiệm
b) Đk: x \(\ne\)2; x \(\ne\)-3
Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)
<=> x + 3 - 6x + 12 = -5
<=> -5x = -5 - 15
<=> -5x = -20
<=> x = 4
vậy S = {4}
c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11
Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)
<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)
Vậy S = {0}