Những câu hỏi liên quan
Edogawa Conan
Xem chi tiết
Phan Nghĩa
8 tháng 8 2020 lúc 15:34

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
tth_new
8 tháng 8 2020 lúc 20:03

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

Khách vãng lai đã xóa
hung
Xem chi tiết
zZz Cool Kid_new zZz
4 tháng 8 2020 lúc 16:14

Ta có:

\(\frac{a+1}{b^2+1}=a+1-\frac{\left(a+1\right)b^2}{b^2+1}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)

Một cách tương ứng khi đó:

\(\Rightarrow P=a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}\)

\(=3+3-\frac{\frac{3^2}{3}+3}{2}=3\)

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
Tran Le Khanh Linh
5 tháng 8 2020 lúc 0:01

sử dụng bđt Cosi ta có:

\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a-1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)

chứng minh tương tự ta cũng được \(\hept{\begin{cases}\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\\\frac{c+1}{a^2+1}\ge a+1-\frac{a+ca}{2}\left(3\right)\end{cases}}\)

từ (1)(2)(3) => \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\)

mặt khác a2+b2+c2>= ab+bc+ca hay 3(ab+bc+ca) =< (a+b+c)2=9

do đó \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}=\frac{3}{2}+3-\frac{9}{6}=3\)

dấu "=" xảy ra khi a=b=c=1

Khách vãng lai đã xóa
Nguyễn Phương Thảo
Xem chi tiết
Agatsuma Zenitsu
4 tháng 2 2020 lúc 19:58

\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)

\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

Vậy \(Min_S=\frac{27}{4}\)

Khách vãng lai đã xóa
Tùng Nguyễn
Xem chi tiết
chikaino channel
6 tháng 4 2018 lúc 21:57

Nếu mọi người nhận ra sẽ thấy cái điều kiện a+b+c=3 ko liên quan tới p thì sao mà giải đề này sai rồi

Phùng Minh Quân
16 tháng 11 2019 lúc 17:37

Cần CM: \(\frac{1}{a^2+b+c}=\frac{1}{a^2-a+3}\ge\frac{-1}{9}a+\frac{4}{9}\)

\(\Leftrightarrow\)\(a^3-5a^2+7a-3\le0\)\(\Leftrightarrow\)\(\left(a-3\right)\left(a-1\right)^2\le0\) ( đúng do \(0< a< 3\) ) 

\(\Rightarrow\)\(P\ge\frac{-1}{9}\left(a+b+c\right)+\frac{12}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
oOo WOW oOo
Xem chi tiết
Trần Thanh Phương
1 tháng 5 2019 lúc 16:43

Áp dụng bdtd quen thuộc : 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Trần Thanh Phương
1 tháng 5 2019 lúc 16:48

Chứng minh bđt nha ( quên mất )

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)

Nhân từng vế của 2 bđt ta được đpcm

Dấu "=" khi \(a=b=c\)

Incursion_03
1 tháng 5 2019 lúc 17:20

\(M=\frac{4x+1}{x^2+3}\)

\(\Leftrightarrow Mx^2+3M=4x+1\)

\(\Leftrightarrow Mx^2-4x+3M-1=0\)(1)

*Nếu M = 0 thì x =  -1/4

*Nếu M khác 0 thì (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                                                     \(\Leftrightarrow4-M\left(3M-1\right)\ge0\)

                                                    \(\Leftrightarrow4-3M^2+M\ge0\)

                                                     \(\Leftrightarrow-1\le M\le\frac{4}{3}\)

điên123
Xem chi tiết
Trí Tiên亗
28 tháng 2 2020 lúc 13:50

1) Tìm GTNN : 

Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

2) Áp dụng BĐT Svacxo ta có :

\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa
Đặng Tú Phương
28 tháng 2 2020 lúc 13:54

2/ Áp dụng bđt Cô- si cho 2 số dương ta có :

\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)

Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> a=b=c=1 

Khách vãng lai đã xóa
Đặng Tú Phương
28 tháng 2 2020 lúc 14:12

\(A=\frac{x}{y+1}+\frac{y}{x+1}=\frac{x\left(x+1\right)+\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}\)

\(=\frac{x^2+x+y^2+y}{\left(x+1\right)\left(y+1\right)}=\frac{\left(x+y\right)^2-2xy+1}{xy+x+y+1}=\frac{-2xy+2}{xy+2}\)

\(=\frac{-2\left(xy+2\right)+6}{xy+2}=-2+\frac{6}{xy+2}\)

vì x,y>0 \(\Rightarrow xy\ge0\Rightarrow xy+2\ge2\Rightarrow\frac{6}{xy+2}\le\frac{6}{2}\)

\(\Rightarrow A\le-2+\frac{6}{2}=1\)

\(\Rightarrow maxA=1\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\Rightarrow maxA=1\)<=> x=0 và y=1 hoặc x=1 và y=0

Áp dụng bđt (a+b)2>=4ab ta có:

\(1^2=\left(x+y\right)^2\ge4xy\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow xy+2\le\frac{1}{4}+2=\frac{9}{4}\)

\(\Rightarrow A\ge-2+6:\frac{9}{4}=\frac{2}{3}\)

\(\Rightarrow minA=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)

Khách vãng lai đã xóa
trương xuân hòa
Xem chi tiết
trương xuân hòa
25 tháng 9 2019 lúc 8:31

trả lời lẹ cho tui cấy

Hoàng Quốc Tuấn
Xem chi tiết
tth_new
7 tháng 1 2020 lúc 18:36

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

Khách vãng lai đã xóa
tth_new
7 tháng 1 2020 lúc 20:28

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

Khách vãng lai đã xóa
tth_new
7 tháng 1 2020 lúc 20:29

í lộn, bài 4:v Bài 3 thấy quen quen, đợi chút em lục lại@Hoàng Quốc Tuấn 

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết
Kiệt Nguyễn
17 tháng 10 2020 lúc 11:25

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 10 2020 lúc 11:38

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
hoàng thị huyền trang
Xem chi tiết
Nguyễn Anh Quân
3 tháng 3 2018 lúc 21:22

S = a+b+c + (1/a + 1/b + 1/c)

   >= (a+b+c) + 9/a+b+c

    = [ (a+b+c) + 9/4.(a+b+c) ] + 27/4.(a+b+c)

   >= \(2\sqrt{\left(a+b+c\right).\frac{9}{4.\left(a+b+c\right)}}\)   +    27/(4.3/2)

     = 3 + 9/2

     = 15/2

Dấu "=" xảy ra <=> a=b=c=1/2

Vậy ......

Tk mk nha

hoàng thị huyền trang
24 tháng 3 2018 lúc 20:55
bài này còn có thể
hoàng thị huyền trang
24 tháng 3 2018 lúc 21:10

bài này còn có thể theo phương pháp chọn điểm rơi trong bài toán cực trị, bạn thử tìm hiểu nhé!!!!