Tìm x, biết :
\(a.\frac{7^{x+2}+7^{x+1}+7x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(b.\left(4x-3\right)^4=\left(4x-3\right)^2\)
Tìm x biết
\(\left(1-3x\right)^3=-64\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\)
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
a/
\(\left(1-3x\right)^3=\left(-4\right)^3\Leftrightarrow1-3x=-4\Leftrightarrow x=\frac{5}{3}\)
b/
\(\left(4-3x\right)^4=\left(4-3x\right)^2\Leftrightarrow\left(4-3x\right)^2\left[\left(4-3x\right)^2-1\right]=0\)
\(\Leftrightarrow\left(4-3x\right)^2\left(5-3x\right)\left(3-3x\right)=0\)
\(\Leftrightarrow3-3x=0\) hoặc \(4-3x=0\) hoặc \(5-3x=0\)
\(\Leftrightarrow x=1\) hoặc \(x=\frac{4}{3}\) hoặc \(x=\frac{5}{3}\)
c/
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)\(\Leftrightarrow\frac{49.7^x+7.7^x+7^x}{57}=\frac{5^{2x}+5.5^{2x}+125.5^{2x}}{131}\)
\(\Leftrightarrow7^x=5^{2x}\Leftrightarrow7^x=25^x\Leftrightarrow\left(\frac{7}{25}\right)^x=1=\left(\frac{7}{25}\right)^0\)
\(\Rightarrow x=0\)
\(\left(1-3x\right)^3=-64\)
=> \(1-3x=-4\)
=> \(-3x=-4+1\) (chuyển vế)
=> \(-3x=-3\Rightarrow x=-3:\left(-3\right)=1\)
Tìm x biết
a) (7^x-2+7^x-1+7)/57=(5^x+5^2x+1+5^2x+3)/131
b) (4x-3)^4=(4x-3)^2
tìm x
a) \(\frac{7^{x+2}+7^{x+1}7^x}{57}=\frac{5^{2x}5^{2x+1}5^{2x+3}}{131}\)
b) \(\left(2x+3\right)^2+\left(3x-2\right)^4=0\)
Tìm x biết
a,\(\left(\frac{4}{5}\right)^{2x+7}\text{=}\frac{625}{256}\)
b,\(\frac{7^{x+2}+7^{x+1}+7^x}{57}\text{=}\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
c,\(\left(4x-3\right)^4\text{=}\left(4x-3\right)^2\)
d,\(\frac{2x+3}{5x+2}\text{=}\frac{4x+5}{10x+2}\)
e,\(\frac{3x-1}{40-5x}\text{=}\frac{2x-3x}{5x-34}\)
f,\(\frac{15}{x-9}\text{=}\frac{20}{y-12}\text{=}\frac{40}{z-2x}\) và \(xy\text{=}1200\)
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Bài 1:Giải phương trình
a)\(10x^2-5x\left(2x+3\right)=15\)
b)\(3x-7-\left(3-4x\right)\left(2x+1\right)=4x\left(2x-7\right)\)
c)\(\left(4x-5\right)^2-\left(7-2x\right)=4\left(2x-4\right)^2+6x\)
Bài 2:Giải phương trình
a)\(\frac{3\left(x-1\right)}{2}+4=\frac{2x}{3}+\frac{4-5x}{6}\)
b)\(\frac{4-x}{7}-\frac{1}{7}\left(\frac{7+3x}{9}+\frac{5-2x}{2}\right)=4-\frac{4x}{3}\)
c)\(\frac{2}{9}\left(2x-5\right)-\frac{5}{3}\left[\left(x-2\right)-\frac{7}{12}\right]=\frac{3}{4}\left(x-3\right)\)
Bài 3:Giải phương trình
a)\(\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\)
b)\(2x\left(x-3\right)+5\left(x-3\right)=0\)
c)\(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
Bài 4:Tìm m để phương trình sau có nghiệm bằng 7:\(\left(2m-5\right)x-2m^2+8=43\)
Bài 5:Giải phương trình
a)\(\left(2x-1\right)^2-\left(2x+1\right)^2=0\)
b)\(\frac{1}{27}\left(x-3\right)^3-\frac{1}{125}\left(x-5\right)^3=0\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Bài 4 xem lại đề nhé bác
Tìm x :
\(\frac{\left(7^{x+2}+7^{x+1}+7^x\right)^{57}}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
Giải các phương trình sau:
a)\(\frac{\left(9x-0.7\right)}{4}-\frac{\left(5x-1.5\right)}{7}=\frac{\left(7x-1.1\right)}{3}-\frac{5\left(0.4-2x\right)}{6}\)
b)\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}=1-\frac{4}{\left(x-1\right)\left(x+3\right)}\)
c)\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=-\frac{7}{6\left(x+5\right)}\)
d)\(\frac{8x^2}{3\left(1-4x\right)^2}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
1, |x-5|=|2x-9|
2, ||2x-11|-x|=8
3, |4x-7|+\(\left|\frac{7-4x}{4x-7}\right|\)=9
4, \(\frac{\left|7x^2-9x+2\right|}{5x+4}\)=2-7x
5, \(\frac{x^2-8x+15}{\left|2x^2-9x-5\right|}\)=3x-9