Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh 	Đức
Xem chi tiết
Nguyễn Huy Tú
16 tháng 3 2022 lúc 13:29

Theo bđt Cauchy schwarz dạng Engel 

\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)

Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ) 

\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)

Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
16 tháng 3 2022 lúc 13:52

\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)

Phạm Minh 	Đức
16 tháng 3 2022 lúc 15:03

Cho mình hỏi bạn Nguyễn Huy Tú, hãy giải thích cho mình hiểu về bất đẳng thức Cauchy schawarz (Định lý, chứng minh,..). Đây là lần đầu tiên mình được nghe tên về bất đẳng thức này nên mong bạn giải thích dễ hiểu. Chúc bạn ngày một thành công hơn trong con đường học vấn của mình !

Khách vãng lai đã xóa
Minh Triều
Xem chi tiết
Trần Thị Loan
1 tháng 10 2015 lúc 8:54

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

Miki Thảo
30 tháng 9 2015 lúc 21:43

hok giỏi nhưng cx có bài bế tắc chứ bộ đâu fai hok giỏi nhất thiết là cái gì cx biết đâu

Sakura Kinomoto
30 tháng 9 2015 lúc 21:47

Blog.Uhm.vNMiki Thảo ơi,mk đồng ý zới ý kiến của bn!

Bui Cam Lan Bui
Xem chi tiết
Trần Thị Loan
1 tháng 10 2015 lúc 8:54

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

 

Hung Trieu
Xem chi tiết
Best monument
Xem chi tiết
alibaba nguyễn
15 tháng 5 2018 lúc 9:05

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Leftrightarrow xy\ge4\)

\(\Rightarrow A=xy+2017\ge4+2017=2021\)

Trịnh Dũng
Xem chi tiết
Kiệt Nguyễn
22 tháng 2 2020 lúc 15:29

\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

Áp dụng bđt cauchy cho 3 số dương:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
vvvvvvvv
Xem chi tiết
Đậu Hũ Kho
18 tháng 4 2021 lúc 16:14

undefined

Nguyễn Việt Lâm
18 tháng 4 2021 lúc 23:00

\(P=\dfrac{1}{x}+\dfrac{4}{4y}\ge\dfrac{\left(1+2\right)^2}{x+4y}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;1\right)\)

Nguyễn Thế Vinh 88
Xem chi tiết
Lê Hồng Thái Dương
Xem chi tiết
Nguyễn Huy Tú
11 tháng 2 2022 lúc 13:06

Theo bđt cauchy schwarz dang engel

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}=\dfrac{4}{10}=\dfrac{2}{5}\)

Dấu ''='' xảy ra khi \(x=y=5\)

Vậy ... 

Nguyễn Quốc Khánh
Xem chi tiết
Kiệt Nguyễn
27 tháng 11 2019 lúc 19:56

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)

\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)

\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)

\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)(Svac - xơ)

Vậy \(M_{min}=\frac{49}{16}\Leftrightarrow\frac{1}{x^2}=\frac{4}{y^2}=\frac{16}{z^2}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{21}}\\y=\frac{2}{\sqrt{21}}\\z=\frac{4}{\sqrt{21}}\end{cases}}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
27 tháng 11 2019 lúc 20:07

Cho sửa chỗ dấu "="

\("="\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)

\(\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1}{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\sqrt{\frac{1}{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
9 tháng 12 2019 lúc 22:15

๖²⁴ʱČøøℓ ɮøү ²к⁷༉ Sửa dấu "=" sai r kìa man.x,y dương nên đâu cần đến âm đâu ???

Khách vãng lai đã xóa