Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Ngọc
Xem chi tiết
Huỳnh Ngọc
Xem chi tiết
Minzz Hoàngg’s
Xem chi tiết
Minzz Hoàngg’s
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 21:00

a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)

mà góc đối diện với cạnh AB là góc ACB

và góc đối diện với cạnh BC là góc BAC

và góc đối diện với cạnh AC là góc ABC

nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 21:02

b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)

hay BC=8(cm)

Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)

mà góc đối diện với cạnh AB là góc ACB

và góc đối diện với cạnh BC là góc BAC

và góc đối diện với cạnh AC là góc ABC

nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

Tùng
Xem chi tiết
Minh Phương
23 tháng 4 2023 lúc 10:48

a. Xét ΔABC và ΔHBA :

      \(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)

       \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)

b. Xét ΔABC vuông tại A

Theo định lý Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: ΔABC \(\sim\) ΔHBA 

  \(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\) 

\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\) 

\(\Rightarrow\) AH = 13,3 cm

\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\) 

\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\) 

\(\Rightarrow\) BH = 10 cm

c. Xét  ΔAIH và ΔBAC :

  \(\widehat{AIH}\) = \(\widehat{BAC}\) = 900

Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\)  (phụ thuộc \(\widehat{HAC}\) )

\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)

 \(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\) 

 \(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)

\(\Rightarrow\) AI . AB = AK. AC(đpcm)

乇尺尺のレ
23 tháng 4 2023 lúc 10:23

a) Xét ΔABC và ΔHBA ta có:

\(\widehat{B}\) chung

\(\widehat{BAC}=\widehat{BHA}=90^0\)

ΔABC ΔHBA

b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:

\(BC^2=AB^2+AC^2\)

         \(=6^2+8^2\)

         \(=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vì ΔABC ∼ ΔBHA(cmt)

\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)

Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

              \(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)

nngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 0:39

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

Hoang Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 19:30

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

Linh Lê
8 tháng 2 2021 lúc 20:05

Ta có: BC2=102=100

AB2+AC2=62+82=100

Vậy BC2=AB2+AC2

Xét ΔABC có:

 BC2=AB2+AC2

Nên ΔABC vuông tại A(Định lí Pytago đảo)

Ta có: ΔABC vuông tại A(gt)

Nên 

Nguyễn Thị Việt Trà
Xem chi tiết
Nguyễn Thị Việt Trà
Xem chi tiết
Bùi Chí Phương Nam
23 tháng 3 2016 lúc 20:20

Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:

\(MQ^2=PQ^2-MP^2\)

\(\Rightarrow MQ=10^2-6^2=100-36=64\)

\(\Rightarrow MQ=8\left(cm\right)\)

Xét ▲ABC và ▲MPQ ta có :

\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)

<A=<M=90

Do đó hai tam giác đồng dạng

Club Anime
23 tháng 3 2016 lúc 20:32

- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .

Phạm Quang Huy
Xem chi tiết
Phạm Quang Huy
20 tháng 2 2022 lúc 16:13

minh dang can gap

Nguyễn Lê Phước Thịnh
20 tháng 2 2022 lúc 22:32

Bài 1: 
AC=4cm

Xét ΔABC có AB<AC

nên \(\widehat{C}< \widehat{B}\)

Bài 2: 

BC=6cm

=>AB+AC=14cm

mà AB=AC

nên AB=AC=7cm

Xét ΔABC có AB=AC>BC

nên \(\widehat{B}=\widehat{C}>\widehat{A}\)