\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{x\left(x+2\right)}=\frac{15}{45}\)
\(\frac{2}{3}x-\frac{780}{11}:\left(\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\right)=-5\)
2\3x-780\11:[13\2.(1\3.5+1\5.7+1\7.9+1\9.11]=-5
2\3x-780\11:[13\2.(1\3-1\5+1\5-1\7+....+1\9-1\11)]=-5
2\3x-780\11:[13\2.(1\3-1\11)]=-5
2\3x-780\11:[13\2.8\33]=-5
2\3x-780\11:52\33=-5
2\3x-525\13=-5
2\3x=-5+525\13
2\3x=460\13
x=460\13:2\3
x=690\13
Tim x biet
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93
1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93
1/2(1/3-1/2x+3)=15/93
=>1/3-1/2x+3=10/31
=>1/2x+3=1/93
=>2x+3=93
2x=93-3=90
=>x=45
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(x=45\)
Vậy \(x=45\).
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
=> \(\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{5}{31}\)
=> \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{5}{31}\)
=> \(\frac{1}{3}-\frac{1}{2x+3}=\frac{5}{31}:\frac{1}{2}=\frac{5}{31}\cdot2=\frac{10}{31}\)
=> \(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}=\frac{1}{93}\)
=> 2x +3 = 93
=> 2x = 90 => x = 45
Tìm x thuộc N*, BIẾT:
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
Tìm số tự nhiên x, biết:
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3)=2.15/93
1/3-1/5+1/5-1/7+...+1/2x+1-1/2x+3=10/31
1/3-1/2x+3=10/31
1/(2x+3)=1/93
2x+3=93
2x=90
x=45
Tính giá trị của biểu thức
A =\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times....\times\left(\frac{1}{99}+1\right)\)
Chứng tỏ
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}>32\%\)
A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)
=3/2x4/3x...............x100/99
=2-1/99
=197/99
A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)
A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)
A=\(\frac{100}{2}=50\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%
Câu đầu tiên:
\(A=\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{100}{99}=\frac{3\cdot4\cdot5\cdot...\cdot99\cdot100}{3\cdot4\cdot5\cdot...\cdot99\cdot2}=\frac{100}{2}=50\)
Câu thứ 2:
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}\)
Tìm x biết:
a)\(\frac{x-1}{21}=\frac{3}{x+1}\)
b)\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\)\(\frac{4}{41.45}=\frac{29}{45}\)
c)\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\)\(\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(a,\frac{x-1}{21}=\frac{3}{x+1}\)
\(\Leftrightarrow\left[x-1\right]\left[x+1\right]=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x^2=8^2\)
\(\Leftrightarrow x=\pm8\)
\(b,\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{21}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{7}{15}\)
\(\Leftrightarrow x=15\)
Vậy x = 15
Bài cuối tương tự
tìm x
A=\(\frac{1}{3}\) +\(\frac{1}{6}\)+\(\frac{1}{10}\)+...........+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{1998}{2000}\)
B=\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+\(\frac{1}{7.9}\)+..........+\(\frac{1}{\left(2x+1\right)\left(2x+3\right)}\)=\(\frac{15}{93}\)
a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.........+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.......+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)
\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{x\left(x+1\right)}\right]=\frac{1998}{2000}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{x\left(x+1\right)}=\frac{999}{2000}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{999}{2000}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{999}{2000}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2000}\)
\(\Leftrightarrow x+1=2000\)\(\Leftrightarrow x=1999\)
Vậy \(x=1999\)
b) \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{15.2}{93}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+......+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)\(\Leftrightarrow2x+3=93\)
\(\Leftrightarrow2x=90\)\(\Leftrightarrow x=45\)
Vậy \(x=45\)
a) (\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)) . x =\(\frac{1}{3}\)
b) (\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)) : x = \(\frac{2}{3}\)
c) (\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)) . x = \(\frac{2}{3}\)
Mik đang cần gấp
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
b)( \(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{9}-\frac{2}{11}_{ }\)):x =\(\frac{2}{3}\)
Giống câu a
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..............+\frac{2}{x.\left(x+2\right)}=\frac{313131}{323232}\)
Tìm x :
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{31}{32}.\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{31}{32}\)
\(\Leftrightarrow\frac{1}{32}=\frac{1}{x+2}\)
\(\Leftrightarrow x+2=32\Rightarrow x=30\)