Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Văn Thiện
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2022 lúc 13:22

Chọn B

Nguyễn Hiền
Xem chi tiết
Dang Minh Hue
Xem chi tiết
kiếp đỏ đen
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
Akai Haruma
20 tháng 11 2017 lúc 16:23

Câu a)

\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)

Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)

Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)

Vậy :

\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)

\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)

Câu b)

\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)

\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)

Do đó:

\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)

Akai Haruma
20 tháng 11 2017 lúc 16:46

Câu c)

\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)

\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)

\(=\frac{x^2}{2}+c+\ln ^2x\)

\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)

Câu d)

\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)

\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)

\(=1+\ln 3\)

Akai Haruma
20 tháng 11 2017 lúc 16:52

Câu e)

Xét \(\int 3x(x+\sqrt{x^2+16})dx=\int 3x^2dx+\int 3x\sqrt{x^2+16}dx\)

Có:

\(\int 3x^2dx=x^3+c\)

\(\int 3x\sqrt{x^2+16}dx=\frac{3}{2}\int \sqrt{x^2+16}d(x^2+16)\)

\(=\sqrt{(x^2+16)^3}+c\)

Do đó: \(\int 3x(x+\sqrt{x^2+16})dx=x^3+\sqrt{(x^2+16)^3}+c\)

\(\Rightarrow \int ^{3}_{0}3x(x+\sqrt{x^2+16})dx=\left.\begin{matrix} 3\\ 0\end{matrix}\right|(x^3+\sqrt{(x^2+16)^3}+c)=88\)

Thảob Đỗ
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2021 lúc 15:23

Bạn coi lại mẫu số

蝴蝶石蒜
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 20:55

a) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

Suy ra: x+2=0

hay x=-2(thỏa ĐK)

Vậy: S={-2}

Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 20:56

d)

ĐKXĐ: \(x\notin\left\{1;3\right\}\)

Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)

Suy ra: \(x^2-3x+5x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+9=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3(loại)

Vậy: \(S=\varnothing\)

Thảob Đỗ
Xem chi tiết
Akai Haruma
5 tháng 10 2021 lúc 23:26

Lời giải:
\(=\int ^1_0\frac{(2x-7)(x^2+2x+1)+13(x+1)-10}{x^2+2x+1}dx=\int ^1_0(2x-7)dx+\int ^1_0\frac{13}{x+1}dx-\int ^1_0\frac{10dx}{(x+1)^2}\)

\(=|^1_0(x^2-7x)+13|^1_0\ln |x+1|+|^1_0\frac{10}{x+1}\)

\(=-11+13\ln 2\)