\(S=\frac{1}{5\times6}+\frac{1}{10\times9}+\frac{1}{15\times12}+...+\frac{1}{3350\times2013}\)
Tính tổng:
\(S=\frac{1}{5\times6}+\frac{1}{10\times9}+\frac{1}{15\times12}+...+\frac{1}{3350\times2013}\)
S = 1/5.6 + 1/10.9+....+ 1/3350.2013
=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)
=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)
= 1/15 .( 1 - 1/671 )
= 1/15 .670/671
=134/2013
S = 1/5.6 + 1/10.9+....+ 1/3350.2013
=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)
=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)
= 1/15 .( 1 - 1/671 )
= 1/15 .670/671
=134/2013
S = 1/5.6 + 1/10.9+....+ 1/3350.2013
=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)
=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)
= 1/15 .( 1 - 1/671 )
= 1/15 .670/671
=134/2013
tính tổng:\(ys=\frac{1}{5\times6}+\frac{1}{10\times9}+\frac{1}{15\times12}+............+\frac{1}{3350\times2013}\)
S = 1/5.6 + 1/10.9+....+ 1/3350.2013
=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)
=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)
= 1/15 .( 1 - 1/671 )
= 1/15 .670/671
=134/2013
Tính tổng
M = \(\frac{1}{4\times6}+\frac{1}{8\times9}+\frac{1}{12\times12}+......+\frac{1}{2680\times2013}\)
Giúp mk nhé Mai
Ta có: \(\frac{1}{4\times6}=\frac{1}{4\times1\times3\times2}=\frac{1}{4\times3\times1\times2}\)
\(\frac{1}{8\times9}=\frac{1}{4\times2\times3\times3}=\frac{1}{4\times3\times2\times3}\)
\(\frac{1}{12\times12}=\frac{1}{4\times3\times3\times4}\)
\(\frac{1}{16\times15}=\frac{1}{4\times4\times3\times5}=\frac{1}{4\times3\times4\times5}\)......
\(\frac{1}{2680\times2013}=\frac{1}{4\times670\times3\times671}\)
Do đó:
\(M=\frac{1}{4\times3}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{670\times671}\right)\)
\(=\frac{1}{12}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{670}-\frac{1}{671}\right)\)
\(=\frac{1}{12}\times\left(\frac{1}{1}-\frac{1}{671}\right)=\frac{1}{12}\times\frac{670}{671}=\frac{335}{4026}\)
Vậy \(M=\frac{335}{4026}\)
Tính nhanh:\(\frac{1\times2\times3+2\times4\times6+3\times6\times9+4\times8\times12+5\times10\times15}{1\times3\times5+2\times6\times10+3\times9\times15+4\times12\times20+5\times15\times25}-\frac{1+2+3+2+4+6+3+6+9+4+8+12+5+10+15}{1+3+5+2+6+10+3+9+15+4+12+20+5+15+25}\)
Tính:
\(\frac{1}{2\times6}+\frac{1}{4\times9}+\frac{1}{6\times12}+...+\frac{1}{198\times300}\)
Đang cần gấp ạ.
Ta có :
1/2x6 + 1/4x9 + 1/6x12 +...+1/198 x 300
= 1/6x2 + 1/6x6 + 1/6x12 + ....+1/6x9900
= 1/6 x ( 1/2 + 1/6 + 1/ 12 +...+1/9900)
= 1/6 x (1/1x2 + 1/2x3 + 1/3x4+...+1/99x100)
=1/6x (1-1/2 + 1/2-1/3 + 1/3 - 1/4 + ....+1/99-1/100)
=1/6x(1-1/100)
=1/6 x 99/100
= 33/200
k cho mình nha , học tốt
Tính:
\(\frac{1}{2\times6}+\frac{1}{4\times9}+\frac{1}{6\times12}+...+\frac{1}{36\times57}+\frac{1}{38\times60}\)
\(\frac{1}{2.6}+\frac{1}{4.9}+\frac{1}{6.12}+...+\frac{1}{36.57}+\frac{1}{38.60}\)
\(=\frac{1}{2.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\frac{19}{20}=\frac{19}{120}\)
\(\frac{1}{2.6}+\frac{1}{4.9}+\frac{1}{6.12}+...+\frac{1}{36.57}+\frac{1}{38.60}\)
\(=\frac{1}{2.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{20}\right)\)'
\(=\frac{1}{6}.\frac{19}{20}=\frac{19}{120}\)
Đáp số: A = | |
A = \(\dfrac{1}{3\times6}\) + \(\dfrac{1}{6\times9}\) + \(\dfrac{1}{9\times12}\)+...+\(\dfrac{1}{144\times147}\)
A = \(\dfrac{1}{3}\) \(\times\)( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+\(\dfrac{1}{9\times12}\)+...+\(\dfrac{3}{144\times147}\))
A = \(\dfrac{1}{3}\) \(\times\)(\(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{144}-\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\)\(\times\)(\(\dfrac{1}{3}\) - \(\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\) \(\times\)\(\dfrac{16}{49}\)
A = \(\dfrac{16}{147}\)
Đây là bài trong góc Olympic của toán Tuổi Thơ
Tìm A biết
A = \(\frac{1}{1\times6\times6}+\frac{1}{2\times9\times8}+\frac{1}{3\times12\times10}+...+\frac{1}{98\times297\times200}\)
\(A=\frac{1}{1\times6\times6}+\frac{1}{2\times9\times8}+\frac{1}{3\times12\times10}+...+\frac{1}{98\times297\times200}\)
\(A=\frac{1}{1\times\left(2\times3\right)\times\left(2\times3\right)}+\frac{1}{2\times\left(3\times3\right)\times\left(2\times4\right)}+...+\frac{1}{98\times\left(99\times3\right)\times\left(100\times2\right)}\)
\(A=\frac{1}{6}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+...+\frac{1}{98\times99\times100}\right)\)
\(12\times A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+...+\frac{2}{98\times99\times100}\)
\(12\times A=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+...+\left(\frac{1}{98\times99}-\frac{1}{99\times100}\right)\)
\(12\times A=\frac{1}{1\times2}-\frac{1}{99\times100}=\frac{4949}{9900}\)
\(A=\frac{4949}{118800}\)
\(\frac{4}{3\times6}+\frac{4}{6\times9}+\frac{4}{9\times12}+\frac{4}{12\times15}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{5}{15}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
Dấu . là nhân nha
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
\(A=\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=>\frac{3}{4}A=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\)
\(=>\frac{3}{4}A=\left(\frac{1}{3}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{12}\right)+\left(\frac{1}{12}-\frac{1}{15}\right)\)
\(=>\frac{3}{4}A=\frac{1}{3}-\frac{1}{15}\)
\(=>\frac{3}{4}A=\frac{4}{15}\)
\(=>A=\frac{4}{15}:\frac{3}{4}\)
\(=>A=\frac{4}{45}\)