Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
youtube user
Xem chi tiết
Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 6 2020 lúc 5:43

a) Xét ΔAFH và ΔADB có

\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)

\(\widehat{BAD}\) chung

Do đó: ΔAFH∼ΔADB(g-g)

b) Xét ΔBHF và ΔCHE có

\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)

\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)

Do đó: ΔBHF∼ΔCHE(g-g)

\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)

hay \(BH\cdot HE=CH\cdot HF\)(đpcm)

misen
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2021 lúc 11:24

a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB∼ΔDHC(g-g)

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)

Xét ΔHED và ΔHBC có 

\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)(cmt)

\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔHED∼ΔHBC(c-g-c)

b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{EAC}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{EAD}\) chung

Do đó: ΔADE∼ΔABC(c-g-c)

nguyen ha giang
Xem chi tiết
doafinrn9un
27 tháng 5 2019 lúc 14:56

a) Xét ΔDBA và ΔFBC

Có : góc ADB = góc BFC do đều bằng 90 độ

góc B chung

suy ra tam giác DBA đồng dạng tam giác FBC ( g.g )

Xét tam giác ABC với tam giác DBF

Có : góc ABC chung (1)

Tương tự khi ta c/m tam giác DBA đồng dạng tam giác FBC

ta cũng có thể c/m đc tam giác BFC đồng dạng tam giác BDA

nên suy ra tỉ số \(\frac{BF}{BD}\)=\(\frac{BC}{BA}\) (2)

Từ 1 và 2 thì suy ra cái cần c/m còn lại

doafinrn9un
27 tháng 5 2019 lúc 14:56

Mik ko vẽ hình được lâu lắm ! Mak mik mới làm đc a) mik đang nghĩ câu b)vui

Lê Hải Dương
Xem chi tiết
phantrungkien
16 tháng 3 2017 lúc 19:49

k mink di mink giai cho de lam

Phan Hải Đăng
Xem chi tiết
Phan Hải Đăng
25 tháng 1 2021 lúc 22:05

I là trung điểm BC nha

 

Nguyễn Thị Bích Ngọc
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết