Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
不運サソリ
Xem chi tiết
Nguyễn Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2023 lúc 9:42

a: ΔODE cân tại O

mà OI là trung tuyến

nên OI vuông góc DE

góc OIA=góc OBA=góc OCA=90 độ

=>O,I,B,A,C cùng thuộc 1 đường tròn

b: góc BIA=góc BOA

góc CIA=góc COA

mà góc BOA=góc COA

nên góc BIA=góc CIA

=>IA là phân giác của góc BIC

 

Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
22 tháng 11 2023 lúc 21:30

a) Do AB là tiếp tuyến của (O) tại B nên \(\widehat{ABO}=90^o\). CMTT, ta có \(\widehat{ACO}=90^o\) \(\Rightarrow\widehat{ABO}+\widehat{ACO}=180^o\) \(\Rightarrow\) Tứ giác ABOC nội tiếp (đpcm).

b) Theo tính chất 2 tiếp tuyến cắt nhau, ta có \(AO\perp BC\). Tam giác ABO vuông tại B, có đường cao BH nên \(AB^2=AH.AO\)

 Mặt khác, lại có \(\widehat{ABD}=\widehat{ACB}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung đó) nên \(\Delta ABD~\Delta AEB\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\) \(\Rightarrow AB^2=AD.AE\)

Từ đó dễ dàng suy ra \(AD.AE=AH.AO\)

c) Do tính chất của 2 tiếp tuyến cắt nhau nên \(\left\{{}\begin{matrix}MD=MB\\ND=NC\end{matrix}\right.\)

Do đó \(C_{AMN}=AM+AN+MN\)

\(=AM+AN+\left(MD+ND\right)\)

\(=\left(AM+MD\right)+\left(AN+ND\right)\)

\(=\left(AM+MB\right)+\left(AN+NC\right)\)

\(=AB+AC\)

\(=2AB\)

Lại có \(AB=\sqrt{AO^2-R^2}=\sqrt{6^2-3,6^2}=4,8cm\)

\(\Rightarrow C_{AMN}=2AB=2.4,8=9,6cm\)

Nguyễn Trung Anh
22 tháng 11 2023 lúc 20:00

k biết

 

Nhan Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 8:53

a: ΔOED cân tại O có OF là trung tuyến

nên OF vuông góc ED

góc OFA=góc OBA=góc OCA=90 độ

=>O,F,B,A,C cùng thuộc 1 đường tròn

b: góc DHC=góc CBA

góc CBA=góc DFC

=>góc DHC=góc DFC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2018 lúc 6:42

a)  Chứng minh tứ giác ABOC nội tiếp được đường tròn.

A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0

=> tứ giác ABOC nội tiếp được đường tròn.

b)  Vẽ cát tuyến ADE  của (O) sao cho ADE  nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh  A B 2 = A D . A E .

Tam giác ADB đồng dạng với tam giác ABE

⇒ A B A E = A D A B ⇔ A B 2 = A D . A E

c)  Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H  thẳng hàng.

Ta có  D H A ^ = E H O ^

nên  D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H  thẳng hàng.

Nguyễn Việt Hùng
19 tháng 5 2022 lúc 8:56

Có 1 phần câu trả lời ở đây.

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

Wolf 2k6 has been cursed
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 19:36

a) Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC

Xét ΔOBC có OB=OC(=R)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

mà OH là đường cao ứng với cạnh BC

nên H là trung điểm của BC(Đpcm)

An Thy
28 tháng 6 2021 lúc 10:02

b) Vì AB là tiếp tuyến \(\Rightarrow\angle ABD=\angle AEB\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta ABD\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABD=\angle AEB\\\angle EABchung\end{matrix}\right.\)

\(\Rightarrow\Delta ABD\sim\Delta AEB\left(g-g\right)\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\Rightarrow AB^2=AD.AE\)

mà \(AB^2=AH.AO\) (hệ thức lượng) \(\Rightarrow AD.AE=AH.AO\Rightarrow\dfrac{AD}{AO}=\dfrac{AH}{AE}\)

Xét \(\Delta AHD\) và \(\Delta AEO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AD}{AO}=\dfrac{AH}{AE}\\\angle EAOchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHD\sim\Delta AEO\left(c-g-c\right)\Rightarrow\angle AHD=\angle AEO\)

\(\Rightarrow DHOE\) nội tiếp \(\Rightarrow\angle OEH=\angle ODH\)

ducla
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 20:16

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>AH*AO=AB^2

Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

Trần Nhã Trúc
Xem chi tiết
Ngoc Bui Nhu Khanh
Xem chi tiết