Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bui manh duc
Xem chi tiết
Bùi Xuân Huấn
Xem chi tiết
Thu Thao
2 tháng 2 2021 lúc 21:35

Đề sai.undefined

Hồng Phúc
2 tháng 2 2021 lúc 21:43

Đặt \(9a+3b+c=x;4a-2b+c=y\)

Ta có \(x+y=13a+b+2c=0\Rightarrow y=-x\)

Khi đó:

\(f\left(3\right).f\left(-2\right)=\left(9a+3b+c\right)\left(4a-2b+c\right)=xy=-x^2\le0\)

thu
Xem chi tiết
Nguyễn Tiến Đạt
16 tháng 4 2018 lúc 20:30

Bạn ơi đề sai đấy đáng ra bắt c/m f(-2).f(3)\(\le0\)nha bạn 

ta có f(x)=ax2+bx+c

\(\hept{\begin{cases}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{cases}}\)

Xét tổng f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)

                            =4a-2b+c+9a+3b+c

                             =13a+b+2c

Lại có 13a+b+2c=0 (giả thiết)

=> f(-2)+f(3)=0

=> f(-2)=-f(3)

=> f(-2).f(3)=f(-2).[-f(-2)]

=-[f(-2)2 ]

Do [f(-2)2 ] \(\ge0\)=> -[f(-2)2 ]\(\le0\)

=> f(-2).f(3)\(\le0\)(đpcm)

vu tien dat
25 tháng 6 2017 lúc 22:21

Ta có:

f(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

f(3) = a.32 + b.3 + c = 9a + 3b + c

Suy ra: f(-2) + f(3) = 13a + b + 2c. Do đó f(-2).f(3) < 0 (đpcm)

thu
12 tháng 7 2017 lúc 17:02

Cảm ơn bạn nha nhưng chả có căn cứ gì cả

Bùi Xuân Huấn
Xem chi tiết
Hồng Phúc
2 tháng 2 2021 lúc 21:16

\(f\left(3\right).f\left(-2\right)=\left(9a+3b+c\right)\left(4a-2b+c\right)\)

\(=\left[3\left(a+b\right)+6a+c\right]\left[-2\left(a+b\right)+6a+c\right]\)

\(=\left(6a+c\right)\left(6a+c\right)=\left(6a+c\right)^2\ge0\) (đpcm)

Truong Tuan Dat
Xem chi tiết
Bảo Châu Trần
Xem chi tiết
Nguyễn Huy Tú
2 tháng 2 2021 lúc 21:11

Theo bài ra ta có : 

\(f\left(3\right)=a.3^2+3b+c=9a+3b+c\)

\(f\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)

hay \(f\left(3\right).f\left(2\right)\ge0\)

\(\Leftrightarrow\left(9a+3b+c\right)\left(4a-2b+c\right)=0\)

Dấu ''='' xảy ra <=> \(a=b=c=0\)( thỏa mãn điều kiện )

Khách vãng lai đã xóa
Rarah Venislan
Xem chi tiết
Phạm Thị Mỵ
Xem chi tiết
Anh Mai
Xem chi tiết
Lê Minh Duyệt
17 tháng 8 2018 lúc 14:14

Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.

a)Chứng minh rằng x0>0

b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)

ミ★kͥ-yͣeͫt★彡
15 tháng 9 2019 lúc 19:31

\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)

\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)