Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Đức Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 3 2023 lúc 18:36

Sửa đề: cắt DC tại G, cắt CB tại F

a: Xét ΔDAE và ΔBFE có

góc DEA=góc BEF
góc EAD=góc EFB

=>ΔDAE đồng dạng vơi ΔBFE
c: 

ΔDAE đồng dạng với ΔBFE

=>AE/FE=DE/BE=DA/BF

ΔDEG đồng dạng với ΔBEA

=>AE/EG=BE/DE

=>EG/AE=AE/FE
=>AE^2=EG*EF

Khoi Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 5 2023 lúc 13:37

a: Xét ΔBEF và ΔDEA có

góc BEF=góc DEA

góc EBF=góc EDA

=>ΔBEF đồng dạng với ΔDEA

b: Xét ΔEAB và ΔEGD có

góc EAB=góc EGD

góc AEB=góc GED

=>ΔEAB đồng dạng với ΔEGD

=>EA/EG=EB/ED

=>EA*ED=EB*EG

Xem chi tiết

Tham khảo:a) Xét tam giác BEF và tam giác DEA có:
góc BEF = góc AED (đối đỉnh);
góc ADE = góc EBF (ở vị trí so le trong của AD song song với BC "ABCD là hình bình hành")
=> tam giác BEF đồng dạng với tam giác DEA (g-g)
Xét tam giác DGE và tam giác BAE có:
góc DEG = góc AEB (đối đỉnh);
góc EDG = góc ABE (vị trí so le trong của AB song song với CD "ABCD là hình binh hành")
=> tam giác DGE đồng dạng với tam giác BAE (g-g)

b) tam giác BEF đồng dạng với tam giác DEA
=> BE/DE=EF/EA (1)
Tam giác BAE đồng dạng với tam giác DGE
=>BE/DE=AE/GE (2)
Từ (1)(2) =>EF/EA=AE/GE=> EF.EG=AE^2
c) tam giác BEF đồng dạng với tam giác DEA
=> BE/DE=BF/DA (3)
Tam giác BAE đồng dạng với tam giác DGE
=> BE/DE=BA/DG (4)
Từ (3)(4) => BF/AD=BA/DG=> BF.DG=BA.AD
Mà AB và AD là 2 cạnh của hình bình hành ABCD nên AB.AD không đổi
=> BF.DG không đổi khi F di chuyển trên BC

undefined

Vân Đoàn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2023 lúc 23:28

a: Xét ΔDAE và ΔBFE có

góc DAE=góc BFE

góc DEA=góc BEF

=>ΔDAE đồng dạng với ΔBFE

Xét ΔDEG và ΔBEA có

góc DEG=góc BEA

góc EDG=góc EBA

=>ΔDEG đồng dạng với ΔBEA

b: ΔDAE đồng dạng với ΔBFE

=>AE/FE=DE/BE=DA/BF

ΔDEG đồng dạng với ΔBEA

=>AE/EG=BE/DE

=>EG/AE=AE/FE
=>AE^2=EG*EF

__J ♪__
Xem chi tiết
Phúc Anh Quân
Xem chi tiết
Phúc Anh Quân
Xem chi tiết
Nguyệt Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2023 lúc 22:25

a: Xét ΔBEF và ΔDEA có

góc BEF=góc DEA

góc EBF=góc EDA

=>ΔBEF đồng dạng với ΔDEA

Xet ΔDGE và ΔBAE có

góc EDG=góc EBA

góc DEG=góc BEA

=>ΔDGE đồng dạng với ΔBAE
b: ΔBEF đồng dạng với ΔDEA
=>EB/ED=EF/EA
=>EA*EB=ED*EF

=>EA=ED*EF/EB
ΔDGE đồng dạng với ΔBAE

=>ED/EB=EG/EA

=>ED*EA=EB*EG

=>EA=EB*EG/ED

=>EA^2=EF*EG

philanthao
Xem chi tiết
Aug.21
7 tháng 7 2019 lúc 17:50

a. AE = AF: 
Δ ABE = Δ ADF vì: 
AB = AD ( cạnh hình vuông) 
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^) 
=> AE = AF 

b. Tứ gaíc EGFK là hình thoi 
EG // AB và AB // FK => EG // FK (*)

=>  \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong) 
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF 
theo giả thiết: IE = IF (2) 
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**) 
(*) và (**) => EGFK là hình bình hành 
vì AI là trung trực của EF => EG = FG 
vậy hình bình hành EGFK là hình thoi. 

c. tam giác FIK đồng dạng tam giác FCE 
Δ FIK ~ Δ FEC vì: 
\(\widehat{F}\)chung 
\(\widehat{KIF}=\widehat{ECF}\) = 1v 

d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi 
gọi cạnh hình vuông là a, ta có: 
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi