Cho hình bình hành ABCD. Qua A kẻ một đường thẳng bất kì cắt BD, DC, BC lần lượt tại E, F, G.
a. Chứng minh rằng: tam giác DAE đồng dạng tam giác BFE
b. AB . AG = . AF . DG
c. AE^2 = EF . EG
d. Tích BF . DG không đổi
e. Cho AB = 10 cm, AD = 9 cm, DG = 6 cm. Tính độ dài BG và CM và 9 lần dt tam giác BEA = 25 lần dt tam giác DEG
Giúp mình vs *-*
Sửa đề: cắt DC tại G, cắt CB tại F
a: Xét ΔDAE và ΔBFE có
góc DEA=góc BEF
góc EAD=góc EFB
=>ΔDAE đồng dạng vơi ΔBFE
c:
ΔDAE đồng dạng với ΔBFE
=>AE/FE=DE/BE=DA/BF
ΔDEG đồng dạng với ΔBEA
=>AE/EG=BE/DE
=>EG/AE=AE/FE
=>AE^2=EG*EF