trong mặt phẳng tọa độ oxy ,cho tam giác abc biết A(0,-3),B(3,1), C(-1,2)
a viết phương trình của đg cao xuất phát từ A của tam giác ABC
b viết phương trình đường tròn có tâm I nằm trên hoành và qua A ,C
c Tính diện tích ABC
trong mặt phẳng Oxy cho 3 điểm A(1; 3), B(-1;4) và C(-3; 0) a)viết phương trình tham số đường thẳng BC b) viết phương trình đường tròn có tâm A và đi qua điểm B c) tìm tọa độ chân đường cao AH của tam giác ABC.
a.
\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp
Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
c.
\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)
\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(3;0),B(-2;1),C(4;1)
a, Viết phương trình tổng quát của đường cao AH của tam giác ABC
b, Viết phương trình đường tròn tâm C tiếp xúc với đường thẳng AH
uBC(6;0)=>nAH(0,6) ( vì AH vuông góc với BC)
PTTQ của đg thẳng AH đi qua A là
\(0\left(x-3\right)+6\left(y-0\right)=0< =>6y=0\)
b)\(d\left(C;AH\right)=R=\dfrac{\left|6.1\right|}{\sqrt[]{0^2+6^2}}=1\)
PT đg tròn tầm C tiếp xúc AH là
\(\left(x-4\right)^2+\left(y-1\right)^2=1^2\)
bài 1
câu 1.1: Cho 3 điểm A(4;3) B(2;7) C(-3;-8)
a. Viết phương trình đường cao từ đỉnh A của tam giác ABC. Tìm tọa độ trực tâm H của tam giác ABC
b. Viết phương trình đường tròn ngoại tiếp tam giác ABC
Câu 1.2: Trong mặt phẳng Oxy, cho điểm A(-1;4) B(3;2)
a. Viết phương trình tổng quát của đường thẳng AB
b. Viết phương trình đường tròn đường kính AB
Câu 2: Trong mặt phẳng Oxy, cho đường tròn (C): (x-3)2 + (y+2)2 = 16
a. Tìm tâm và bán kính của đường tròn (C)
b. Viết phương trình đường thẳng (d) tiếp xúc với đường tròn (C) biết d || △: 3x-4y+2= 0
mong mn giúp ạ
1.2
a.
\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận (1;2) là 1 vtpt
Phương trình đường thẳng AB:
\(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)
b.
Gọi M là trung điểm AB \(\Rightarrow M\left(1;3\right)\)
\(AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\) \(\Rightarrow AM=\dfrac{1}{2}AB=\sqrt{5}\)
Đường tròn đường kính AB có tâm M và bán kính \(R=AM=\sqrt{5}\) nên có pt:
\(\left(x-1\right)^2+\left(y-3\right)^2=5\)
1.1
a. \(\overrightarrow{CB}=\left(5;15\right)=5\left(1;3\right)\) ; \(\overrightarrow{CA}=\left(7;11\right)\)
Đường cao qua A vuông góc BC nên nhận (1;3) là 1 vtpt
Phương trình đường cao đi qua A có dạng:
\(1\left(x-4\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-13=0\)
Đường cao qua B vuông góc AC nhận (7;11) là 1 vtpt có dạng
\(7\left(x-2\right)+11\left(y-7\right)=0\Leftrightarrow7x+11y-91=0\)
Trực tâm H là giao điểm 2 đường cao nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x+3y-13=0\\7x+11y-91=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=13\\y=0\end{matrix}\right.\)
\(\Rightarrow H\left(13;0\right)\)
1.1
b.
Gọi tâm đường tròn ngoại tiếp là \(I\left(a;b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a-4;b-3\right)\\\overrightarrow{BI}=\left(a-2;b-7\right)\\\overrightarrow{CI}=\left(a+3;b+8\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a-4\right)^2+\left(b-3\right)^2\\BI^2=\left(a-2\right)^2+\left(b-7\right)^2\\CI^2=\left(a+3\right)^2+\left(b+8\right)^2\end{matrix}\right.\)
Do I là tâm đường tròn nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-4\right)^2+\left(b-3\right)^2=\left(a-2\right)^2+\left(b-7\right)^2\\\left(a-4\right)^2+\left(b-3\right)^2=\left(a+3\right)^2+\left(b+8\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2b+7=0\\7a+11b+24=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=1\end{matrix}\right.\)
\(\Rightarrow I\left(-5;1\right)\Rightarrow\overrightarrow{CI}=\left(-2;9\right)\Rightarrow R^2=CI^2=\left(-2\right)^2+9^2=85\)
Phương trình đường tròn:
\(\left(x+5\right)^2+\left(y-1\right)^2=85\)
Câu 1: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A(1;3)\) và hai đường trung tuyến xuất phát từ B,C lần lượt có phương trình \(y-1=0\) và \(x-2y+1=0\)
a) Viết phương trình đường tròn đường kính OA
b) Viết phương trình 3 đường thẳng chứa 3 cạnh của tam giác ABC
Câu 2: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A(-1;-3)\), đương trung trực của cạnh AB có phương trình \(3x+2y-4=0\), trọng tâm\(G(4;-2)\)
a) Viết PTTS,TQ của đt chứa cạnh AB của tam giác ABC
b) Tìm tọa độ trung điểm M của cạnh BC tam giác ABC
c) Tìm tọa độ điểm B,C của tam giác ABC
Câu 3:Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh \(A(3;0)\) và phương trình 2 đường cao \((BB'):2x+2y-9-0\) và \((CC'):3x-12y-1=0\)
a) Viết PTTQ cuả các đt lần lượt chứa các cạnh AB,AC của tam giác ABC
bTìm tọa độ điểm B,C và viết phương trình cạnh BC của tam giác ABC
Câu 4: Trong hệ trục tọa độ Oxy, cho elip (E) có pt:\(x^2+16y^2=16\). Tìm tọa độ có đỉnh, tiêu diểm độ dài trục lớn, trục bé của elip (E)
1.
\(\overrightarrow{OA}=\left(1;3\right)\Rightarrow OA=\sqrt{10}\)
Gọi I là trung điểm OA \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
Phương trình đường tròn đường kính OA nhận I là trung điểm và có bán kính \(R=\dfrac{OA}{2}=\dfrac{\sqrt{10}}{2}\):
\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{5}{2}\)
b.
Gọi 2 trung tuyến là BN và CM (với M, N là trung điểm AB và AC)
B thuộc BN nên tọa độ có dạng: \(\left(b;1\right)\)
M là trung điểm AB \(\Rightarrow M\left(\dfrac{b+1}{2};2\right)\)
M thuộc CM nên tọa độ thỏa mãn:
\(\dfrac{b+1}{2}-4+1=0\Rightarrow b=5\Rightarrow B\left(5;1\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(4;-2\right)\Rightarrow\) pt AB: \(\left\{{}\begin{matrix}x=1+2t\\y=3-t\end{matrix}\right.\)
Gọi G là trọng tâm tam giác ABC \(\Rightarrow\) G là giao điểm BN và CM
Tọa độ G thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-3\\y_C=3y_G-y_A-y_B=-1\end{matrix}\right.\) \(\Rightarrow C\left(-3;-1\right)\)
Biết tọa độ C, A, B bạn tự viết pt 2 cạnh còn lại
2.
AB vuông góc với trung trực của AB nên nhận (2;-3) là 1 vtpt và (3;2) là 1 vtcp
Phương trình tham số:
\(\left\{{}\begin{matrix}x=-1+3t\\y=-3+2t\end{matrix}\right.\)
Phương trình tổng quát:
\(2\left(x+1\right)-3\left(y+3\right)=0\Leftrightarrow2x-3y-7=0\)
b. Câu này tìm trung điểm của AB hay BC nhỉ? Ta chỉ có thể tìm được trung điểm BC sau khi hoàn thành câu c (nghĩa là thứ tự bài toán bị ngược)
Gọi N là trung điểm AB \(\Rightarrow\) tọa độ N thỏa mãn:
\(\left\{{}\begin{matrix}2x-3y-7=0\\3x+2y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;-1\right)\)
N là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_N-x_A=5\\y_B=2y_N-y_A=1\end{matrix}\right.\) \(\Rightarrow B\left(5;1\right)\)
G là trọng tâm tam giác nên: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=8\\y_C=3y_G-y_A-y_B=-4\end{matrix}\right.\) \(\Rightarrow C\left(8;-4\right)\)
\(\Rightarrow M\left(\dfrac{13}{2};-\dfrac{3}{2}\right)\)
Câu 3 đơn giản bạn tự làm (AC vuông góc BB' nên nhận (1;-1) là 1 vtpt, AB vuông góc CC' nên nhận (4;1) là 1 vtpt).
Câu b thì B là giao điểm AB và BB', C là giao điểm AC và CC'
Câu 4.
\(x^2+16y^2=16\Leftrightarrow\dfrac{x^2}{16}+\dfrac{y^2}{1}=1\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\) \(\Rightarrow c^2=15\Rightarrow c=\sqrt{15}\)
Các đỉnh có tọa độ lần lượt: \(\left(4;0\right);\left(-4;0\right);\left(0;1\right);\left(0;-1\right)\)
Tiêu điểm: \(F_1\left(-\sqrt{15};0\right);F_2\left(\sqrt{15};0\right)\)
Độ dài trục lớn: \(2a=8\)
Độ dài trục bé: \(2b=2\)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm H(2;3) và phương trình đường tròn đi qua chân các đường cao của tam giác ABC có phương trình (C): x2 + y2 - 4x - 4y +1 =0. Viết phương trình đường tròn ngoại tiếp tam giác ABC
1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có cạnh AC đi qua điểm M (0;-1). Biết AB =2AM, phương trình đường phân giác trong AD : x-y =0, phương trìn đường cao CH: 2x+y+3 =0. Tìm tọa độ các đỉnh A,B,C.
2. Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD tâm I (-1;1). Gọi M nằm trên cạnh CD sao cho MC =2 MD. Tìm tọa độ điểm C biết đường thẳng AM có phương trình 2x-y=0,điểm A có hoành độ dương
trong mặt phẳng tọa độ Oxy cho tam giác abc với A(2;1) B(4;3)C(6;7)
1,viết phương trình tổng quát của các đường thẳng chứa cạnh BC và đường cao AH
2,viết phương trình đường tròn có tâm và trọng tâm G của tam giác ABC và tiếp xúc với đường thẳng BC
trong mặt phẳng tọa độ oxy cho tam giác ABC. Gọi D là chân đường phân giác kẻ từ A .tâm đường tròn ngoại tiếp tam giác ABC và ABD lần lượt là I(2;1) và E(5/3;2). Phương trình AD:x-y=0 và điểm A có hoành độ lớn hơn 2. tìm tọa độ điểm A,B,C
Trong mặt phẳng toạ độ Oxy cho tam giác ABC vuông tại A, có đỉnh B(-3;2). Đường phân giác trong góc A có phương trình x+y-7 = 0. Viết phương trình đường tròn nội tiếp tam giác ABC biết diện tích tam giác bằng 24 và điểm A có hoành độ dương