Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh Khôi
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2021 lúc 18:04

a. 

\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp

Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)

b.

\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)

Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)

c.

\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)

\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)

Võ Hồng Kim Thoa
Xem chi tiết
Đậu Hũ Kho
21 tháng 4 2021 lúc 21:30

uBC(6;0)=>nAH(0,6) ( vì AH vuông góc với BC)

PTTQ của đg thẳng AH đi qua A là 

\(0\left(x-3\right)+6\left(y-0\right)=0< =>6y=0\)

b)\(d\left(C;AH\right)=R=\dfrac{\left|6.1\right|}{\sqrt[]{0^2+6^2}}=1\)

PT đg tròn tầm C tiếp xúc AH là 

\(\left(x-4\right)^2+\left(y-1\right)^2=1^2\)

Hoàng Tiến Thành
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 0:22

1.2

a.

\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận (1;2) là 1 vtpt

Phương trình đường thẳng AB:

\(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)

b.

Gọi M là trung điểm AB \(\Rightarrow M\left(1;3\right)\)

\(AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\) \(\Rightarrow AM=\dfrac{1}{2}AB=\sqrt{5}\)

Đường tròn đường kính AB có tâm M và bán kính \(R=AM=\sqrt{5}\) nên có pt:

\(\left(x-1\right)^2+\left(y-3\right)^2=5\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 0:12

1.1

a. \(\overrightarrow{CB}=\left(5;15\right)=5\left(1;3\right)\) ; \(\overrightarrow{CA}=\left(7;11\right)\)

Đường cao qua A vuông góc BC nên nhận (1;3) là 1 vtpt

Phương trình đường cao đi qua A có dạng:

\(1\left(x-4\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-13=0\)

Đường cao qua B vuông góc AC nhận (7;11) là 1 vtpt có dạng

\(7\left(x-2\right)+11\left(y-7\right)=0\Leftrightarrow7x+11y-91=0\)

Trực tâm H là giao điểm 2 đường cao nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+3y-13=0\\7x+11y-91=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=13\\y=0\end{matrix}\right.\)

\(\Rightarrow H\left(13;0\right)\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 0:19

1.1

b.

Gọi tâm đường tròn ngoại tiếp là \(I\left(a;b\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a-4;b-3\right)\\\overrightarrow{BI}=\left(a-2;b-7\right)\\\overrightarrow{CI}=\left(a+3;b+8\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a-4\right)^2+\left(b-3\right)^2\\BI^2=\left(a-2\right)^2+\left(b-7\right)^2\\CI^2=\left(a+3\right)^2+\left(b+8\right)^2\end{matrix}\right.\)

Do I là tâm đường tròn nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-4\right)^2+\left(b-3\right)^2=\left(a-2\right)^2+\left(b-7\right)^2\\\left(a-4\right)^2+\left(b-3\right)^2=\left(a+3\right)^2+\left(b+8\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-2b+7=0\\7a+11b+24=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=1\end{matrix}\right.\)

\(\Rightarrow I\left(-5;1\right)\Rightarrow\overrightarrow{CI}=\left(-2;9\right)\Rightarrow R^2=CI^2=\left(-2\right)^2+9^2=85\)

Phương trình đường tròn:

\(\left(x+5\right)^2+\left(y-1\right)^2=85\)

Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:28

1.

\(\overrightarrow{OA}=\left(1;3\right)\Rightarrow OA=\sqrt{10}\)

Gọi I là trung điểm OA \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

Phương trình đường tròn đường kính OA nhận I là trung điểm và có bán kính \(R=\dfrac{OA}{2}=\dfrac{\sqrt{10}}{2}\):

\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{5}{2}\)

b.

Gọi 2 trung tuyến là BN và CM (với M, N là trung điểm AB và AC)

B thuộc BN nên tọa độ có dạng: \(\left(b;1\right)\)

M là trung điểm AB \(\Rightarrow M\left(\dfrac{b+1}{2};2\right)\)

M thuộc CM nên tọa độ thỏa mãn:

\(\dfrac{b+1}{2}-4+1=0\Rightarrow b=5\Rightarrow B\left(5;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(4;-2\right)\Rightarrow\) pt AB: \(\left\{{}\begin{matrix}x=1+2t\\y=3-t\end{matrix}\right.\)

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\) G là giao điểm BN và CM

Tọa độ G thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-3\\y_C=3y_G-y_A-y_B=-1\end{matrix}\right.\) \(\Rightarrow C\left(-3;-1\right)\)

Biết tọa độ C, A, B bạn tự viết pt 2 cạnh còn lại

Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:37

2.

AB vuông góc với trung trực của AB nên nhận (2;-3) là 1 vtpt và (3;2) là 1 vtcp

Phương trình tham số:

\(\left\{{}\begin{matrix}x=-1+3t\\y=-3+2t\end{matrix}\right.\)

Phương trình tổng quát:

\(2\left(x+1\right)-3\left(y+3\right)=0\Leftrightarrow2x-3y-7=0\)

b. Câu này tìm trung điểm của AB hay BC nhỉ? Ta chỉ có thể tìm được trung điểm BC sau khi hoàn thành câu c (nghĩa là thứ tự bài toán bị ngược)

Gọi N là trung điểm AB \(\Rightarrow\) tọa độ N thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y-7=0\\3x+2y-4=0\end{matrix}\right.\)  \(\Rightarrow N\left(2;-1\right)\)

N là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_N-x_A=5\\y_B=2y_N-y_A=1\end{matrix}\right.\) \(\Rightarrow B\left(5;1\right)\)

G là trọng tâm tam giác nên: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=8\\y_C=3y_G-y_A-y_B=-4\end{matrix}\right.\) \(\Rightarrow C\left(8;-4\right)\)

\(\Rightarrow M\left(\dfrac{13}{2};-\dfrac{3}{2}\right)\)

Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:41

Câu 3 đơn giản bạn tự làm (AC vuông góc BB' nên nhận (1;-1) là 1 vtpt, AB vuông góc CC' nên nhận (4;1) là 1 vtpt).

Câu b thì B là giao điểm AB và BB', C là giao điểm AC và CC'

Câu 4.

\(x^2+16y^2=16\Leftrightarrow\dfrac{x^2}{16}+\dfrac{y^2}{1}=1\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\) \(\Rightarrow c^2=15\Rightarrow c=\sqrt{15}\)

Các đỉnh có tọa độ lần lượt: \(\left(4;0\right);\left(-4;0\right);\left(0;1\right);\left(0;-1\right)\)

Tiêu điểm: \(F_1\left(-\sqrt{15};0\right);F_2\left(\sqrt{15};0\right)\)

Độ dài trục lớn: \(2a=8\)

Độ dài trục bé: \(2b=2\)

Giang Linh
Xem chi tiết
Lê Mạnh Cường
Xem chi tiết
vo nhi
25 tháng 4 2018 lúc 20:00

de ***** tu lam dihihi

nguyễn trần huy trung
Xem chi tiết
Cát Hoàng Kiệt
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết