Cho đa giác đều có 60 đỉnh nội tiếp đường tròn (O). Có bao nhiêu tam giác nhọn có 3 đỉnh trong 60 đỉnh của đa giác ?
Cho một đa giác đều 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có các đỉnh là các đỉnh của đa giác trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm A. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho?
Cho đa giác đều A1A2...An nội tiếp đường tròn (O). Chọn ngẫu nhiên 3 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tam giác tù.
Cho đa giác đều A 1A 2......A2n,n (n≥2 ; n∈Z) nội tiếp trong đường tròn (O). Tính:
a. Số đoạn thẳng mà hai đầu mút là hai trong 2n đỉnh A1, A 2,....A2n ?
b. Số vectơ khác vectơ – không mà điểm đầu và điểm cuối của chúng là hai trong 2n đỉnh
A1, A 2,.......A2n ?
c. Số đường chéo của đa giác trên?
d. Số tam giác có các đỉnh là ba trong 2n đỉnh A1, A2,.....A2n ?
e. Số hình chữ nhật có các đỉnh là bốn trong 2n đỉnh A1, A2,........A2n ?
a) Từ các chữ số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên có bốn chữ số khác nhau và số đó lớn hơn 2020? b) Cho đa giác lồi (H) có 10 cạnh. Có bao nhiêu tam giác mà mỗi đỉnh của nó là đỉnh của (H) và mỗi cạnh của tam giác đó không trùng với cạnh nào của (H) ?
Cho tập A={1,2,3,4,5,6}. Gọi S là tập hợp các tam giác có độ dài 3 cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác cân bằng.
(Bài này làm như thế nào vậy mn?Khó quas)
Cho đa giác đều (H) có 30 đỉnh. Lấy tùy ý 3 đỉnh của (H). Xác suất để 3 đỉnh lấy được tạo thành một tam giác tù bằng?
A. 39/140
B. 39/58
C. 45/58
D. 39/280