Tìm GTNN (Min) của \(A=\frac{3x^2+12x+17}{x^2+4x+5}\)
Tìm GTNN của \(A=\frac{3x^2-12x+10}{x^2-4x+5}\)
\(A=\frac{3\left(x^2-4x+5\right)-5}{x^2-4+5}=3-\frac{5}{\left(x-2\right)^2+1}\ge3-5=-2\)
Dau '=' xay ra khi \(x=2\)
Vay \(A_{min}=-2\)khi \(x=2\)
Tìm GTNN của \(A=\frac{3x^2-12x+10}{x^2-4x+5}\)
tìm GTNN (min ) A=3x2 - 6x + 5
B= -5 / 4x2 -12x+35
a) Ta có: \(A=3x^2-6x+5\)
\(=3\left(x^2-2x+\frac{5}{3}\right)\)
\(=3\left(x^2-2x+1+\frac{2}{3}\right)\)
\(=3\left(x-1\right)^2+2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-1\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
Vậy: Giá trị nhỏ nhất của biểu thức \(A=3x^2-6x+5\) là 2 khi x=1
b) Ta có: \(4x^2-12x+35\)
\(=4\left(x^2-3x+\frac{35}{4}\right)\)
\(=4\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{26}{4}\right)\)
\(=4\left(x-\frac{3}{2}\right)^2+26\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow4\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow4\left(x-\frac{3}{2}\right)^2+26\ge26\forall x\)
\(\Rightarrow4x^2-12x+35\ge26\forall x\)
\(\Rightarrow\frac{5}{4x^2-12x+35}\le\frac{5}{26}\forall x\)
\(\Rightarrow\frac{-5}{4x^2-12x+35}\ge\frac{-5}{26}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)
hay \(x=\frac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=-\frac{5}{4x^2-12x+35}\) là \(-\frac{5}{26}\) khi \(x=\frac{3}{2}\)
1.Tìm x
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
b)3x.\(\left(\frac{4}{3}+1\right)\)-4x.(x-2)=10
c)12x^2-4x.(3x-5)=10x-17
d) 4x(x-5)-7x.(x-4)+3x^2=12
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
\(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
\(\Leftrightarrow-14x-x=-2-5\)
\(\Leftrightarrow-15x=-7\)
\(\Leftrightarrow x=\frac{7}{15}\)
b\(,3x.\left(\frac{4}{3}+1\right)-4x\left(x-2\right)=10\)
\(\Leftrightarrow4x+3x-4x^2+8x-10=0\)
\(\Leftrightarrow-4x^2+15x-10=0\)
Đề sai???
\(c,12x^2-4x\left(3x-5\right)=10x-17\)
\(\Leftrightarrow12x^2-12x^2+20x-10x=-17\)
\(\Leftrightarrow10x=-17\)
\(\Leftrightarrow x=-\frac{17}{10}\)
\(d,4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{3}{2}\)
1.Tìm x
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
b)3x.\(\left(\frac{4}{3}+1\right)\)-4x.(x-2)=10
c)12x^2-4x.(3x-5)=10x-17
d) 4x(x-5)-7x.(x-4)+3x^2=12
\(a,5\left(x^2-3x+1\right)+x\left(1-5x\right)=x-2\)
\(\Leftrightarrow5x^2-15x+5+x-5x^2-x+2=0\)
\(\Leftrightarrow-15x+7=0\)
\(\Leftrightarrow-15x=-7\)
\(\Leftrightarrow x=-\frac{7}{-15}\)
\(\Leftrightarrow x=\frac{7}{15}\)
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm x:
a.12x^2-4x(3x-5)=10x-17
b.1/5x.(10x-15)-2x(x-5)=12
c.3x(4/3x+1)-4x(x-2)=10
2.tính gtbt
A=5-4x(x-2)+4x^2 tại x=4
làm khuyến mại 1 câu;
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
x/2 - ( 3x/5 - 13/5 ) = -( 7/5 + 7/10x )
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
tìm Min :
A = \(x = {3x^2 - 12x+10 \over x^2-4x+5}\)