Cho phương trình
\(8x^2-8x+m^2+1\)=0
Tìm để phương trình có nghiệm 1/2. Tìm nghiệm còn lại
Cho phương trình \(8x^2-8x+m^2+1=\)0
(x là ẩn số)
Tìm m để phương trình có nghiệm 1/2. Tìm nghiệm còn lại
Phương trình có nghiệm x = 1/2
=> \(8\left(\frac{1}{2}\right)^2-8\cdot\frac{1}{2}+m^2+1=0\)
=> \(8\cdot\frac{1}{4}-8\cdot\frac{1}{2}+m^2+1=0\)
=> 2 - 4 + m2 + 1 = 0 \(\Leftrightarrow\)m2-1=0 \(\Leftrightarrow\)m2 = 1 \(\Leftrightarrow\)m= \(\pm1\)
Vậy với m = \(\pm1\)thì x có nghiệm duy nhất là x = \(\frac{1}{2}\)
Cho phương trình
\(8x^2-8x+m^2+1=\)0
Tìm m để phương trình có nghiệm 1/2. Tìm nghhieemj còn lại
Ta có:
\(8x^2-8x+m+1=0\left(a=8;b'=-4;c=m+1\right)\)
Xét \(\Delta'=16-8m-8=8-8m\)
để pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow8-8m\ge0\Leftrightarrow m\le1\)
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{4+\sqrt{8-8m}}{8}=\frac{4+2\sqrt{2-2m}}{8}=\frac{2+\sqrt{2-2m}}{4}\)
Vì \(x_1=\frac{1}{2}\Rightarrow\frac{2+\sqrt{2-2m}}{4}=\frac{1}{2}\)
\(\Rightarrow2+\sqrt{2-2m}=2\)
\(\Leftrightarrow2-2m=0\)
\(\Leftrightarrow m=1\)(tm đk)
Vì \(m=1\Rightarrow\Delta'=0\Rightarrow\)pt có nghiệm kép\(\Rightarrow x_1=x_2=\frac{1}{2}\)
Cho phương trinhf
\(8x^2-8x+m^2+1\)=0
TIm m để phương trình có nghiệm 1/2. Tìm nghiệm còn lại
Cho phương trình
\(8x^2-8x+m^2+1=\)0
x lầ ẩn số
Tìm m để phương trinhf có nghiệm 1/2 tìm nghiệm còn lại
Cho phương trình: x^2 - 2mx + (m -1)^3 = 0
Tìm m để phương trình có hai nghiệm phân biệt trong đó có một nghiệm bằng bình phương của nghiệm còn lại
Cho hai phương trình \(x^2-8x+4m=0\left(1\right)\) và x\(^2+X-4m\)=0 (2)
a) Tìm m để hai phương trình có nghiệm chung.
b) Tìm m để một nghiệm của phương trình (1) gấp đôi một nghiệm của phương trình (2).
Cho phương trình \(x^2-8x-3\left(m-1\right)=0\)
a) Tìm m để phương trình có hai nghiệm phân biệt nhỏ hơn 7
b) Tìm m để phương trình có hai nghiệm phân biệt lớn hơn 7.
c) Tìm m để phương trình có hai nghiệm thỏa mãn \(x_1< 7< x_2\)
\(\text{Δ}=\left(-8\right)^2-4\cdot\left(-3\right)\cdot\left(m-1\right)\)
\(=64+12\left(m-1\right)\)
=64+12m-12
=12m+52
a: Để phương trình có hai nghiệm phân biệt nhỏ hơn 7 thì
\(\left\{{}\begin{matrix}12m+52>0\\8< 14\end{matrix}\right.\Leftrightarrow m>-\dfrac{13}{4}\)
b: Để phương trình có hai nghiệm phân biệt lớn hơn 7 thì \(\left\{{}\begin{matrix}12m+52>0\\8>14\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
a.Tìm m để phương trình \(3x^2+mx-35=0\) có 1 nghiệm là 7.Tìm nghiệm còn lại?
b.Tìm m để phương trình \(x^2-13x+m=0\) có 1 nghiệm là -5.Tìm nghiệm còn lại?
c.Tìm m để phương trình \(2x^2-\left(m+4\right)x+m=0\) có 1 nghiệm là -3.Tìm nghiệm còn lại?
b: Thay x=-5 vào pt, ta được:
\(m+25+65=0\)
hay m=-90
Theo đề, ta có: \(x_1+x_2=13\)
nên \(x_2=18\)
c: Thay x=-3 vào pt, ta được:
\(18+3\left(m+4\right)+m=0\)
=>4m+30=0
hay m=-15/2
Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)
hay \(x_2=-1.25\)
cho phương trình \(x^2-2\left(m+1\right)x+4m=0\)
a, giải phương trình khi m = 3
b, tìm m để để phương trình có nghiệm kép. Tìm nghiệm kép đó
c, xác định phương trình có 1 nghiệm bằng 4. Tìm nghiệm còn lại
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)