Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thai Tran Anh

Những câu hỏi liên quan
Nguyễn Dương Thành Đạt
Xem chi tiết
Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 20:48

a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

 

Hoàng Sơn ({ cam báo cáo...
27 tháng 6 2021 lúc 20:51

ab≤a2+b2/2

ergergerg tgergerg
Xem chi tiết
Rhider
Xem chi tiết
Dr.STONE
22 tháng 1 2022 lúc 8:58

- Uả vế phải lớn hơn hoặc bằng vế trái chứ nhỉ?

Nguyễn Quang Linh
Xem chi tiết
Linh Chi
Xem chi tiết
Nguyễn Hiếu Nghĩa
Xem chi tiết
Roronoa Zoro
Xem chi tiết
Roronoa Zoro
Xem chi tiết
ctk_new
21 tháng 9 2019 lúc 13:38

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ac\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)

Mà \(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+a^2c^2\)

nên \(a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2\left(ab+bc+ac\right)^2\)

\(a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\left(đpcm\right)\)

Roronoa Zoro
22 tháng 9 2019 lúc 21:35

thanks

The Smosh
Xem chi tiết
Nguyệt
31 tháng 10 2018 lúc 17:21

\(\left(a+3\right).\left(b-4\right)-\left(a-3\right).\left(b+4\right)=0\)

\(\Rightarrow\left(a+3\right).\left(b-4\right)=\left(a-3\right).\left(b+4\right)\)

\(\Rightarrow\frac{a-3}{a+3}=\frac{b-4}{b+4}\)

\(=>\frac{a}{a+3}-\frac{3}{a+3}=\frac{b}{b+4}-\frac{4}{b+4}\)

\(\frac{a}{a+3}=\frac{b}{b+4}\Rightarrow a.\left(b+4\right)=b.\left(a+3\right)\Rightarrow ab+4a=ab+3b\)

\(\Rightarrow4a=3b\Rightarrow\frac{a}{3}=\frac{b}{4}\left(đpcm\right)\)

lương thiên thân
Xem chi tiết
Huỳnh Quang Sang
20 tháng 6 2018 lúc 20:32

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

nguyễn thị huyền anh
20 tháng 6 2018 lúc 20:34

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6