\(a^2\text{≡}0,1\left(mod4\right)\)
⇒ \(a^4\text{≡}0,1\left(mod16\right)\)
⇒ (đpcm)
\(a^2\text{≡}0,1\left(mod4\right)\)
⇒ \(a^4\text{≡}0,1\left(mod16\right)\)
⇒ (đpcm)
1, Chứng minh rằng:22225555 +55552222 chia hết cho 7
2. a, Chứng minh rằng với n thuộc Z thì n4 đồng dư 0.1(mod 16)
b, Tìm các số nguyên x,y,z,t thỏa mãn: x4+y4+z4+t4= 165
CHỨNG MINH RẰNG:
a) Nếu a đồng dư với 1 ( mod 2) thì a2 đồng dư với 1 ( mod 8)
b) Nếu a đồng dư với 1 ( mod 3) thì a2 đồng dư với 1 ( mod 9)
Câu hỏi của Lưu Vũ Hoàng - Toán lớp 7 - Học toán với OnlineMath
Trả lời :
a, 2^1 + 3^5 + 4^9 + ... + 2003^8005 : 5
Ta có : 2 đồng dư 2 ( mod 10 )
3 đồng dư 3 ( mod 10 )
...................................
2003 đồng dư 2003 ( mod 10 )
=> 2^1 + 3^5 + 4^9 + ... + 2003^8005 đồng dư 2 + 3 + 4 + ... + 2003 ( mod 10 )
đồng dư 2007005 ( mod 10 )
đồng dư 5 ( mod 10 )
Hay 2^1 + 3^5 + 4^9 + ... + 2003^8005 chia hết cho 5
b, Đặt A = 2^3 + 3^7 + 4^11 + ... + 2003^8005
Mọi lũy thừa trong A đều có dạng n4(n-2)+3
=> n thuộc { 2 ; 3 ; ... ; 2003 }
Áp dụng t/c 3 thì 2^3 có c/s tận cùng là 2 , 3^7 có c/s tận cùng là 7 ; ...
=> C/s tận cùng của A là : ( 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9 ) + 199( 1 + 8 +7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9018
Vậy A chia 5 dư 3
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
Bài 1: Cho a/b = b/c = c/a . CMR: a = b = c
Bài 2: Cho a/b+c = b/c+a = c/a+b = K . Tìm K
Bài 3: Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2 . CMR: x/2 = y/3 = z/4
Bài 4: Cho x+16/9 = y-25/16 = z+9/25. Biết 2x^3-1 = 15 . Tìm x, y ,z
( Các dấu / là phân số)
p là số nguyên tố lớn hơn 5, chứng minh rằng p^4=1 (mod 240)
CMR: Đa thức A(x)=-4x4+3x3-2x2+x-16 vô nghiệm
CMR: a) 7^6 + 7^5 - 7^4 chia hết cho 55
b) 16^5 + 2^12 chia hết cho 33