Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tầm Tầm
Xem chi tiết
Su Thai
29 tháng 3 2018 lúc 21:27

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

nữ hoàng ánh sáng
29 tháng 3 2018 lúc 20:25

bạn thử tra mạng đi

ko biet
Xem chi tiết
Không Tên
27 tháng 8 2018 lúc 11:19

\(a^3+b^3+c^3=3abc\) 

<=>   \(a^3+b^3+c^3-3abc=0\)

<=>    \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>    \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

  Xét:     \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>    \(2a^{ 2}+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>     \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>    \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\) <=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)<=>   \(a=b=c\)

=>  đpcm

minh đúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 21:38

a: Tọa độ điểm D là:

\(\left\{{}\begin{matrix}x_D=\dfrac{1-1}{2}=0\\y_D=\dfrac{-2+\left(-2\right)}{2}=-2\end{matrix}\right.\)

minh đúc
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Bùi Mạnh Khôi
15 tháng 8 2018 lúc 10:25

1 ) Ta có :

\(a+b-c=0\Leftrightarrow a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-3a^2b-3b^2a-b^3\)

\(\Rightarrow a^3+b^3-c^3=-3a^2b-3b^2a\)

\(\Rightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3-c^3=-3abc\left(đpcm\right)\)

2 ) Ta có :

\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3a^2b+3b^2a-a^3\)

\(\Rightarrow a^3-b^3+c^3=-3a^2b+3b^2a\)

\(\Rightarrow a^3-b^3+c^3=-3ab\left(a-b\right)\)

\(\Rightarrow a^3-b^3+c^3=3ab\left(b-a\right)\)

\(\Rightarrow a^3-b^3+c^3=3abc\left(đpcm\right)\)

Bùi Mạnh Khôi
15 tháng 8 2018 lúc 10:30

1 ) Bổ sung dấu \(\Rightarrow\) thứ 2 :

\(\Rightarrow...=a^3+b^3-a^3-3a^2b-3b^2a-b^3\)

Bùi Mạnh Khôi
15 tháng 8 2018 lúc 10:43

Làm lại 2) :

\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3b^2a+3ab^2-a^3\)

\(\Rightarrow a^3-b^3+c^3=-3b^2a+3ab^2\)

\(\Rightarrow a^3-b^3+c^3=-3ab\left(b-a\right)=-3abc\left(đpcm\right)\)

Võ Nguyễn Thu Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 21:16

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{10}=\dfrac{a-b+c}{9-12+10}=\dfrac{35}{7}=5\)

Do đó: a=45; b=60; c=50

Thư
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 1 2021 lúc 22:36

a3 + b3 + c3 = 3abc 

⇒ a3 + b3 + c3 - 3abc = 0

⇒ ( a3 + b3 ) + c3 - 3abc = 0

⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

Vì a + b + c ≠ 0

⇒ a2 + b2 + c2 - ab - bc - ac = 0

⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 0

⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

Vì \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(a-c\right)^2\end{cases}}\ge0\forall a,b,c\)⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 ≥ 0 ∀ a,b,c

Dấu "=" xảy ra khi a = b = c

Khi đó \(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Khách vãng lai đã xóa
Nobi Nobita
17 tháng 1 2021 lúc 9:11

Từ \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right).c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Vì \(a+b+c\ne0\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0\)\(\left(b-c\right)^2\ge0\)\(\left(c-a\right)^2\ge0\)\(\forall a,b,c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)\(\forall a,b,c\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)

Thay \(a=b=c\)vào N ta có: \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Vậy \(N=\frac{1}{3}\)

Khách vãng lai đã xóa
Ngô Thị Ngọc Hân
Xem chi tiết
Neet
18 tháng 12 2016 lúc 11:08

BĐt phụ : \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

c/m :\(3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(2a^2-4ab+2b^2\ge0\)

\(2\left(a-b\right)^2\ge0\)(luôn đúng)

Giải ;

ta có:\(\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\)(1)

\(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

tương tự ta có:\(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right)\);\(\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(a+c\right)\)

cộng vế vs vế ta có:

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}+\frac{a^3}{c^2+ac+a^2}\ge\frac{2}{3}\left(a+b+c\right)\)

từ (1)→\(2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\ge\frac{2}{3}\left(a+b+c\right)\)

\(S\ge\frac{1}{3}\left(a+b+c\right)=1\)(đặt S luôn cho tiện)

dấu = xảy ra khi BĐt ở đầu đúng :\(\begin{cases}a=b\\b=c\\c=a\end{cases}\)mà a+b+c=3↔a=b=c=1

 

Tầm Tầm
Xem chi tiết
Không Tên
24 tháng 3 2018 lúc 21:00

         \(a^3+b^3+3abc>c^3\)

\(\Leftrightarrow\)\(a^3+b^3-c^3+3abc>0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc>0\)

\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc\right)-3ab\left(a+b-c\right)>0\)

\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac+bc\right)>0\)

\(a,\)\(b,\)\(c\)  là 3 cạnh tam giác   

\(\Rightarrow\)\(a+b-c>0\)(BĐT tam giác)

         \(a^2+b^2+c^2+Ab+ac+bc>0\)  do  a,b,c  >0

suy ra:  \(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac\right)>0\)

\(\Rightarrow\)\(a^3+b^3-c^3+3abc>0\)

\(\Rightarrow\)\(a^3+b^3+3abc>c^3\)

P/S: phần BĐT mk trình bày kém, mong các bn giúp đỡ

Fawkes
24 tháng 3 2018 lúc 20:55

Trong một tam giác thì: a + b > c

=>    (a + b)3 > c3

<=>  a3 + b3 + 3ab(a + b) > c3

mà a + b > c => 3ab(a + b) > 3abc

=> a3 + b3 + 3ab(a + b) > a3 + b3 + 3abc > c3