Cho x, y > 0 thoả mãn \(x+y=1\).
Tìm min của \(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
1) Cho x;y>0 thoả mãn x+y=1 Tìm max B = \(x^2y^3\)
2) Cho x+y>0 thoả man x-y >= 1 Tìm max C = \(\frac{4}{x}-\frac{1}{y}\)
3) Tìm min M = \(\frac{x-3}{\sqrt{x-1}-\sqrt{x}}\)
1. Cho x,y là 2 số thực khác 0 thỏa mãn :5x2 +\(\frac{y^2}{4}\)+\(\frac{1}{4x^2}\)=\(\frac{5}{2}\).Tìm min, max của A=2013-xy
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\)+4xy
3.Cho x,y là 2 số dương thoả mãn x+\(\frac{1}{y}\)\(\le\)1. Tìm min của C=32.\(\frac{x}{y}\)+2011.\(\frac{y}{x}\)
4.Cho x,y là 2 số thực dương thỏa mãn x+y=\(\frac{5}{4}\). Tìm min của A=\(\frac{4}{x}\)+\(\frac{1}{4y}\)
5.Giải phương trình : \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}\)+\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}\)+\(\frac{1}{\sqrt{x+1}+\sqrt{x}}\)=1
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Các bạn ơi giúp mình với ạ, cảm ơn nhiều!
dong y quan diem @aliba
bo xung them. nhieu qua khi tra loi phan cau hoi troi len khoi man hinh =>" ko nhin duoc de bai"
(da khong biet lai con luoi dang cau hoi nua)
Bài 1: Cho x, y, z > 0 thay đổi thỏa mãn x + y + z = 3. Tìm min của \(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
Bài 2: Cho x > 1. Tìm min của A = \(\frac{x^4+1}{x\left(x-1\right)\left(x+1\right)}\)
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
bạn vào trang này nhé có bài như thến này đấy
//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm
tính diện tích hình vẽ dưới đây
1) Cho x,y > 0 thoả mãn : 1/x + 1/y =1/2 Tìm min : A = \(\sqrt{x}+\sqrt{y}\)
2) Tìm min max B = \(\sqrt{3x-5}+\sqrt{7-3x}\)
1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
cho x,y,z dương thay đổi, thoả mãn xyz=1 . tìm max của S = \(\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+zx}\)
tìm min của A=\(\sqrt{x}+\sqrt{y}\) biết x>0 y>0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
Áp dụng BĐT cô-si , ta có :
1/x+1/y >= 2 ( căn của (xy) hay xy=4
căn 4 của (xy) >= 2
Mặt khác : căn x + căn y >= 2. Căn 4 của (xy) >= 4
Vậy min của A = 4 khi x=y=4
1.Cho x>0. Tìm Min của N=\(\frac{x^3+2000}{x}\)
2. Cho x>0, y>0, x+y\(\ge\)0. Tìm Min của P=\(5x+3y+\frac{12}{x}+\frac{16}{y}\)
3. Cho x, y, z\(\ge\)0, thỏa mãn x+y+z\(\ge\)12. Tìm Min của A=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm GTNN của P = \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{z^4+x+y}}-\frac{8\left(xy+yz+zx\right)}{xy+yz+zx+1}\)