cho x >0 , y >0 thỏa mãn x+y=0 . Tìm GTNN y= \(\frac{4}{x}\)+ \(\frac{9}{y}\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Cho x,y > 0 thỏa mãn\(x^2+\frac{4}{y^2}=1\)
tìm GTNN \(\frac{3x}{y}+\frac{y}{2x}\)
Cho x, y, z > 0 và thỏa mãn x + 2y + 3z > 20
Tìm GTNN của biểu thức : P = \(x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
Biết trước điểm rơi rồi thì quá EZ.
\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)
\(\ge13\)
Dấu "=" xảy ra tại a=2;b=3;c=4
cho x,y,z>0 thỏa mãn x+y+z=2018
tìm GTNN của \(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
Trước tiên chứng minh:
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+b^4+a^3b+ab^3=\left(a+b\right)\left(a^3+b^3\right)\)
Áp dụng bài toán được
\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
\(\ge\frac{1}{2}\left(x+y+y+z+z+x\right)=x+z+y=2018\)
Mọi người ơi giúp em với ạ. Em cần trước 16h thứ 4 ngày 22/7/2020 ạ. Dùng BĐT Cosy ạ. Cảm ơn mọi người nhiều ạ
1) Cho x,y>0 thỏa mãn x+y=1. Tìm GTNN của biểu thức \(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
2) Cho x,y>0 thỏa mãn \(x+y\le1\). Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
3) Cho a,b>0 thỏa mãn \(a+b\le1\).Tìm GTNN của biểu thức \(A=\frac{1}{a^2+b^2}+\frac{1}{b}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)
Cho x>0, y>0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\). Tìm GTNN của A = \(\sqrt{x}+\sqrt{y}\)
Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(BĐT Svacxo)
\(\Rightarrow\frac{1}{2}\ge\frac{4}{x+y}\)
\(\Leftrightarrow x+y\ge8\)(1)
Áp dụng BĐT Cauchy cho 2 số không âm:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)
\(\Rightarrow\frac{1}{2}\ge\frac{2}{\sqrt{xy}}\)
\(\Leftrightarrow\sqrt{xy}\ge4\)(2)
Từ (1) và (2) suy ra \(x+\sqrt{xy}+y\ge16\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge16\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge4\)
Muốn cô k cũng dễ lắm. Tuy nhiên cái cô muốn là các em làm được bài trên OLM sẽ nhìn ra được những lỗi sai của mình thì để lần sau trong các cuộc thi HSG hay các bài kiểm tra trên lớp sẽ không bị mắc phải những cái lỗi tương tự.
bài phía dưới: Từ (1) , (2) => \(x+2\sqrt{xy}+y\ge16\) nha
Bỏ qua lỗi này. Cái quan trọng là khi tìm giá trị lớn nhất hoặc nhỏ nhất em cần phải biết nó đạt tại x =?, y=?.
nếu bỏ qua phần này sẽ bị trừ điểm rất nặng. :)
Cho x>0, y>0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\). Tìm GTNN của A = \(\sqrt{x}+\sqrt{y}\)
Cho x,y>0 thỏa mãn: x+y=2. Tìm GTNN của \(C=\frac{1}{x^2+y^2}+\frac{2}{x+y}\)
thay x+y=2 vào C có \(C=\frac{1}{x^2+y^2}+\frac{2}{2}=\frac{1}{x^2+y^2}+1\) (*)
ta có: \(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=4-2xy\)(1)
thay (1) vào (*) có \(C=\frac{1}{4-2xy}+1\) (**)
mặt khác áp dụng BĐT cô -si ta có:\(x^2+y^2\ge2xy\Leftrightarrow4-2xy\ge2xy\Leftrightarrow xy\le1\) (2)
\(4-2xy\le2\Leftrightarrow\frac{1}{4-2xy}\ge\frac{1}{2}\Leftrightarrow\frac{1}{4-2xy}+1\ge\frac{3}{2}\)
\(\Leftrightarrow C=\frac{1}{x^2+y^2}+\frac{1}{x+y}\ge\frac{3}{2}\)
vậy GTNN của C=3 phần 2 <=>x=y=1
vẫn có giá trị nhỏ hơn vd thay x=3/2, y=1/2 ta được C=7/5<3/2
cho x,y>0;thỏa mãn x+y=1. Tìm GTNN của \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2