Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{20^2}\). Chứng minh rằng A<1
cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\).chứng minh rằng A<3/4
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}=1-\frac{1}{2011}=\frac{2010}{2011}>\frac{2010}{2680}=\frac{3}{4}\)
Hình như có gì đó sai sai :')
A+1/4=1/2+1/32+......+1/20112
A+1/4<1/2+1/2*3 +1/3*4 +....1/2010*2011
A+1/4<1-1/2011<1=3/4+1/4
A<1/4 (ĐPCM)
Bài 1 : Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{79}{80}\)
Chứng minh rằng A < \(\frac{1}{9}\)
Bài 4 : Chứng minh rằng: 1.3.5.7....19 = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
a) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}.\) Chứng minh rằng: A < 1
b) Cho B= \(2^1+2^2+2^3+...+2^{2016}\) Chứng minh rằng: B chia hết cho 21
a) A = 1+\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{100^2}\)
Chứng minh rằng A<2
b) B =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+................+\frac{1}{2012^2}\)
Chứng minh rằng \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)
b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a)A=1+1/22+1/32+....+1/1002
<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2
b)B=1/22+1/32+...+1/20122
<1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012
1/2-1/2013=2011/4026<2011/2012<1
cho:
a) A= 2+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+\frac{1}{65}+\frac{1}{66}+\frac{1}{67}\)
chứng minh rằng A>5
b) B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{89^2}+\frac{1}{90^2}\)
chứng minh rằng \(\frac{40}{91}\)<B<1
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2015^2}\)
Chứng minh rằng A<1
Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2014\cdot2015}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2015^2}< \frac{1}{2014.2015}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}< 1^{\left(đpcm\right)}\)
Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
Chứng minh rằng: \(\frac{29}{60}< A< \frac{2}{3}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\Rightarrow A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\Leftrightarrow A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{10}=\frac{29}{60}\left(1\right)\)
Lại có :
\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
\(\Leftrightarrow A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{9}=\frac{23}{36}\left(2\right)\)
Mà \(\frac{23}{36}< \frac{24}{36}=\frac{2}{3}\left(3\right)\)
Từ (1), (2) và (3) suy ra \(\frac{29}{60}< A< \frac{2}{3}\)
cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) chứng minh rằng A<\(\frac{1}{2}\)
Bạn xem lời giải ở đường link sau nhé:
Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath
A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)
A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)
=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)
=\(1+1-\frac{1}{50}\)
=\(2-\frac{1}{50}\)\(< 2\)
\(\Rightarrow A< 2\)
Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{49^2}+\frac{1}{50^2}\)
CHỨNG MINH RẰNG A<2