Bài làm
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\)
Ta có: \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};\frac{1}{20.20}< \frac{1}{19.20}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\) (1)
Biến đổi vế phải, ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{1}-\frac{1}{20}\)
\(=\frac{20}{20}-\frac{1}{20}\)
\(=\frac{19}{20}\)
Mà 19 < 20
=> \(\frac{19}{20}< 1\) (2)
Từ (1) và (2) => \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}< 1\)
Vậy A < 1 ( đpcm )