giải PT:
\(\frac{x-a}{x-b}\)+\(\frac{x-b}{x-b}\)+2 = 0 (với x là ẩn)
cho t ẩn
\(\frac{x-a}{x+a}\)-\(\frac{x+a}{x-a}+\frac{3a^2+a}{x^2-a^2}=0\)
a) giải pt với a=-3
B) giải pt với a=1
c) xác định a để pt có nghiệm là x=0,5
Giải pt ẩn x :
\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
Giúp Salahhhh vớiii <3
\(ĐKXĐ:a,b,c\ne0\)
\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{xa-a^2}{abc}+\frac{xb-b^2}{abc}+\frac{xc-c^2}{abc}=\frac{2bc}{abc}+\frac{2ac}{abc}+\frac{2ab}{abc}\)
\(\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2bc+2ac+2ab}{abc}\)
\(\Leftrightarrow xa-a^2+xb-b^2+xc-c^2=2bc+2ac+2ab\)
\(\Leftrightarrow xa+xb+xc=2bc+2ac+2ab+a^2+b^2+c^2\)
\(\Leftrightarrow x\left(a+b+c\right)=\left(a+b+c\right)^2\)
\(\Leftrightarrow x=a+b+c\)
Vậy x = a + b + c
\(ĐKXĐ:a,b,c\ne0\)
\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(\Leftrightarrow\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)
\(\Leftrightarrow1+\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}=4\)
\(-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)
\(\frac{4\left(a+b+c\right)}{a+b+c}-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)
\(\frac{4\left(a+b+c-x\right)}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
\(\Rightarrow\left(a+b+c-x\right)=0\)hoặc \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
+) Nếu \(\Rightarrow\left(a+b+c-x\right)=0\)thì x = a + b + c
+) Nếu \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)thì x thỏa mãn với mọi số
iu cậu quáaa <3
Giải PT (dùng phương pháp đặt ẩn phụ):
\(\frac{\left(a-x\right)\sqrt[4]{x-b}+\left(x-b\right)\sqrt[4]{a-x}}{\sqrt[4]{a-x}+\sqrt[4]{x-b}}=\frac{a-b}{2}\)
TXD x>= b, x<=a : x khác a=b
Đặt (a-x) = A, (x-b) = B
Vế phải = (a-x+x - b)/2 = (A + B)/2
2 x (A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\))= (A+B) (\(\sqrt[4]{A}\)+ \(\sqrt[4]{B}\))
= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)+A\(\sqrt[4]{B}\)
A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\)= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)
\(\sqrt[4]{B}\)(A-B) = \(\sqrt[4]{A}\)(A-B)
=> A = B => a-x = x-b => x = (a+b)/2 (a khác b)
Giải các pt chứa ẩn ở mẫu:
a) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
b) \(\frac{2x-5}{x+5}=3\)
c) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
a, Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)
\(Đkxđ:\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)
\(Pt\Leftrightarrow x\left(x+2\right)-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tmđk\right)\end{matrix}\right.\)
Vậy .........
\(b,Đkxđ:x\ne-5\)
Ta có: \(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow2x-5=3\left(x+5\right)\)
\(\Leftrightarrow x=20\left(tmđk\right)\)
Vậy .........
c, \(Đkxđ:x\ne3\)
Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=3\left(ktmđk\right)\end{matrix}\right.\)
Vậy ............
Cho PT ẩn x( m là tham số): \(\frac{m+3}{x+1}-\frac{5-3m}{x-2}=\frac{mx+3}{x^2-x-2}\)(1)
a)Giải PT(1) khi m=1.
b)Tìm tất cả các giá trị của tham số m để PT(1) vô nghiệm.
Giải phương trình với ẩn x
a) \(\frac{x+a-1}{a+2}+\frac{x-a}{a-2}+\frac{x-a}{4-a^2}=0\)
b) \(\frac{x-a}{b+c}+\frac{x-b}{a+c}+\frac{x-c}{a+b}=3\)
Mn júp mk vs
Giải các pt sau bằng cách đặt ẩn phụ
a) 3(x2+\(\frac{1}{x^2}\)) - 16(x+\(\frac{1}{x}\))+26=0
b) (x+2)(x+3)(x+8)(x+12)=4
a/ Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(\Leftrightarrow3\left(a^2-2\right)-16a+26=0\)
\(\Leftrightarrow3a^2-16a+20=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{10}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=\frac{10}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x+1=0\\3x^2-10x+3=0\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x+2\right)\left(x+12\right)\left(x+3\right)\left(x+8\right)=4\)
\(\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+11x+24\right)=4\)
Đề thiếu ko bạn? Vế phải là 4 hay \(4x^2\)?
cho 2 số a, b khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{-1}{2}\)
cmr PT ẩn x sau luôn có nghiệm \(\left(x^2-ã-b\right)\left(x^2-bx-a\right)=0\)
Theo đề bài ta có: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{2}\Leftrightarrow a+b=-\frac{ab}{2}\)
Ta lại có
\(x^2+ax+b=0\) có \(\Delta_1=a^2+4b\)
\(x^2+bx+a=0\) có \(\Delta_2=b^2+4a\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+4b+b^2+4a=a^2+b^2+4\left(a+b\right)\)
\(=a^2+b^2+4\left(\frac{-ab}{2}\right)=a^2+b^2-2ab\)
\(=\left(a-b\right)^2\ge0\)
\(\Rightarrow\) Có ít nhất 1 trong hai \(\Delta_1,\Delta_2\) không âm
Vậy ít nhất 1 trong 2 phương trình trên có nghiệm hay phương trình ban đầu luôn có nghiệm
1, Xét pt x2 - m2x + 2m + 2 = 0 (ẩn x). Tìm số nguyên dương m để pt có nghiệm nguyên
2,cho pt x3 + ax2 + bx - 1 = 0
a, tìm các số hữu tỉ a và b để pt có nghiệm \(x=2-\sqrt{3}\)
b, Với a,b vừa tìm đc ở câu a, Gọi x1 ; x2 ; x3 là 3 nghiệm của pt trên
Tính \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm
Làm câu 2 trước vậy , câu 1 để sau
a, pt có nghiệm \(x=2-\sqrt{3}\)
\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)
\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)
Vì VP là số hữu tỉ
=> VT là số hữu tỉ
Mà \(\sqrt{3}\)là số vô tỉ
=> 4a + b + 15 = 0
=> 7a + 2b + 25 = 0
Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)
Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)
b, Với a = -5 ; b = 5 ta có pt:
\(x^3-5x^2+5x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)
Giả sử x1 = 1 là 1 nghiệm của pt ban đầu
x2 ; x3 là 2 nghiệm của pt (1)
Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)
Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)
\(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)
\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)
\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)
\(\Leftrightarrow x^5_2+x_3^5+4=728\)
\(\Leftrightarrow x_2^5+x_3^5=724\)
Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
\(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)
\(=1+724\)
\(=725\)
Vậy .........
Câu 1 đây , lừa người quá
Giả sử pt có 2 nghiệm x1 ; x2
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)
\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)
Lại có \(x_1+x_2=m^2\inℕ^∗\)
Mà x1 hoặc x2 nguyên
Nên suy ra \(x_1;x_2\inℕ^∗\)
Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)
\(\Leftrightarrow2m+2-m^2+1\ge0\)
\(\Leftrightarrow-1\le m\le3\)
Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)
Thử lại thấy m = 3 thỏa mãn
Vậy m = 3