Cho ba điểm A(1-2m; 4m), B(2m;1-m), C(3m-1;0). Gọi G là trọng tâm ABC thì G nằm trên đường thẳng nào
Cho ba điểm A(1;1), B(3;2); C(m+4; 2m+1). Tìm m để A,B,C thẳng hàng
A. m=3
B. m=3/2
C. m=1
D. m=-2
Cho ba điểm di động A( 1-2m; 4m) ; B( 2m; 1-m) và C( 3m-1; 0). Gọi G là trọng tâm tam giác ABC thì G nằm trên đường thẳng nào sau đây:
A. y- x= 1
B. y= 2x+ 1
C. y= x+1/3
D. y= x+ 2
Trong mặt phẳng Oxy, cho A(m-1; -1) ; B(2; 2-2m) ; C(m+3; 3). Tìm giá trị m để A; B; C là ba điểm thẳng hàng?
A. m= 2
B. m=0
C. m=1
D. m=-2
GIÚP EM VỚI Ạ, CHIỀU NAY EM THI RỒI :(
Câu 3: Trong mặt phẳng Oxy, cho A( m - 1 ; -1 ) , B( 2; 2 - 2m ) , C( m + 3; 3 ). Tìm giá trị m để A, B, C là ba điểm thẳng hàng
A(m-1;-1); B(2;2-2m); C(m+3;3)
\(\overrightarrow{AB}=\left(2-m+1;2-2m+1\right)\)
=>\(\overrightarrow{AB}=\left(3-m;3-2m\right)\)
\(\overrightarrow{AC}=\left(m+3-m+1;3+1\right)\)
=>\(\overrightarrow{AC}=\left(4;4\right)\)
Để A,B,C thẳng hàng thì \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\)
=>3-m=3-2m
=>m=0
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(3-m;3-2m\right)\\\overrightarrow{AC}=\left(4;4\right)\end{matrix}\right.\)
3 điểm A;B;C thẳng hàng khi và chỉ khi \(\overrightarrow{AB}=k\overrightarrow{AC}\) với \(k\ne0\)
Hay \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\Rightarrow m=0\)
Cho hàm số y = - x 4 + ( 2 m + 1 2 ) x 2 có đồ thị (C). Tổng tất cả các giá trị thực của tham số m để (C) có ba điểm cực trị và đường tròn qua ba điểm cực trị này cũng đi qua điểm A( 9 8 ;9/8) là
A. - 2 + 33 4
B. - 1 + 2 33 4
C. 3 4
D. - 1 + 33 4
Cho hàm số y = x 3 - 2 ( m + 1 ) x 2 + ( 5 m + 1 ) x - 2 m - 2 có đồ thị là (Cm) với m là tham số. Có bao nhiêu giá trị của m nguyên trong đoạn [–10;100] để (Cm) cắt trục hoành tại ba điểm phân biệt A(2;0), B, C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình x2 + y2 = 1?
A. 109
B. 108
C. 18
D. 19
Đáp án B.
Phương pháp: Tìm điều kiện để phương trình hoành độ giao điểm có ba nghiệm phân biệt thỏa mãn x A = 2 , hoặc x B < - 1 < x C < 1 hoặc - 1 < x B < 1 < x C
Cách giải:
Đồ thị hàm số y = x 3 - 2 ( m + 1 ) x 2 + ( 5 m + 1 ) x - 2 m - 2 luôn đi qua điểm A(2;0)
Xét phương trình hoành độ giao điểm
x 3 - 2 ( m + 1 ) x 2 + ( 5 m + 1 ) x - 2 m - 2 = 0
Để phương trình có 3 nghiệm phân biệt ó pt (*) có 2 nghiệm phân biệt khác 2
Giả sử x B ; x C ( x B < x C ) là 2 nghiệm phân biệt của phương trình (*).
Để hai điểm B, C một điểm nằm trong một điểm nằm ngoài đường tròn x2 + y2 = 1
TH1:
TH2:
Kết hợp điều kiện ta có:
Lại có m ∈ [–10;100]
=> Có 108 giá trị m nguyên thỏa mãn yêu cầu bái toán
Cho hàm số y = x 4 − 2 m + 1 x 2 + m có đồ thị (C), m là tham số. (C) có ba điểm cực trị A, B, C sao cho OA=OB; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung khi:
A. m = 0 hoặc m = 2
B. m = 2 ± 2 2
C. m = 3 ± 3 3
D. m = 5 ± 5 5
Đáp án là B.
+ Hàm số có 3 cực trị khi − 2 m + 1 < 0 ⇔ m > − 1. (1)
+ y ' = 4 x 3 − 4 m + 1 x = 0 ⇔ x = 0 x = ± m + 1
Các điểm cực trị A, B, C của đồ thị là: A 0 ; m ;
B m + 1 ; − m 2 − m − 1 ; C − m + 1 ; − m 2 − m − 1
+ O A = B C ⇔ m = 2 m + 1 ⇔ m 2 − 4 m − 4 = 0
⇔ m = 2 ± 2 2 .
Tìm tham số m để đồ thị hàm số y = 9 x 4 - 2 m - 1 x 2 - 3 m 2 + 3 m + 1 có ba điểm cực trị và ba điểm cực trị đó tạo thành tam giác có 1 góc bằng 60 ° ?
A. m = 1
B. m = 4
C. m = 3
D. m = 2
Cho hàm số y = m x 4 + 2 m - 1 x 2 - 3 m + 1 , m là tham số. Xác định điều kiện của m để đồ thị hàm số cắt Ox tại ba điểm phân biệt
A. m = 0
B. 0 < m < 1
C. m ≥ 1
D. m < 0