Cho tam giác ABC có AB = AC,tia phân giác góc A cắt BC tại M
CM RẰNG GÓC AMC>GÓC AMB
b)DC>DB
Cho tam giác ABC có AB=AC. Tia phân giác của góc BAC cắt cạnh BC tại M. Đường thẳng qua M vuông góc với AB cắt AB tại H, đường thẳng qua M vuông góc với AC cắt AC tại K
a/ CM tam giác AMB=AMC
b/ CM
a/ xét tam giác ABM và tam giác ACM
có : AB = AC (gt)
góc BAM = góc CAM (vì AM là tia phân giác của góc BAC)
AM chung
do đó tam giac AMB = AMC (c-g-c)
cho tam giác ABC có AB<AC tia phân giác góc A cắt BC tại M
A)CM GÓC AMC>GÓC AMB
B)MC>MB
cho tam giác ABC với AB<AC,tia phân giác góc A cắt BC tại M.Chứng Minh rằng: góc AMC>góc AMB,
MC>MB,
góc AMB là góc nhọn
a:AB<AC
=>góc C<góc B
góc BAM+góc B+góc AMB=góc CAM+góc C+góc AMC
mà góc BAM=góc CAM; góc B>góc C
nên góc AMB<góc AMC
b: Xét ΔABC có AM là phân giác
nên MB/AB=MC/AC
mà AB<AC
nên MB<MC
c: góc AMB<góc AMC
=>góc AMB<1/2(góc AMB+góc AMC)=90 độ
=>góc AMB nhọn
Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M.
a,Chứng minh tam giác AMB bằng tam giác AMC
b,Trên tia đối của MA lấy điểm D sao cho MD= MA. chứng minh AB // DC
c,Qua M vẽ ME vuông góc với AB( E thuộc AB) và MF vuông góc với AC( F thuộc AC) Chứng minh ME=MF
d, Chứng minh EM vuông góc với CD
cho tam giác ABC có AB=AC . tia phân giác của góc BAC cắt BC Tại M .đường thẳng qua M vuông góc với AB tại H đường thẳng qua M cắt AC tại K a/CM tam giác AMB=AMC b/CM tam giác AKm=AHM từ đó so sánh AH và HK c/HK vuông góc AM
cho tam giác ABC có AB=AC . tia phân giác của góc BAC cắt BC Tại M .đường thẳng qua M vuông góc với AB tại H đường thẳng qua M cắt AC tại K a/CM tam giác AMB=AMC b/CM tam giác AKm=AHM từ đó so sánh AH và HK c/HK vuông góc AM
cho tam giác abc có góc b= góc a .tia phân giác có góc a cắt bc tại d chứng minh rằng db = dc , ab= ac
Sửa đề: góc b=góc c
Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Suy ra: AB=AC
Ta có: ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh BC
nên D là trung điểm của BC
hay DB=DC
Cho tam giác ABC, có góc B = góc C. Tia phân giác của góc A cắt BC tại M. C/m
a) tam giác AMB = tam giác AMC
b) AB = AC
Cho tam giác ABC có góc B = góc C tia phân giác trong góc A cắt BC tại M vẽ MH vuông góc với AB (H thuộc AB ) MK vuông góc AC ( K thuộc AC ) chứng minh: a) tam giác AMB = tam giác AMC b) MH = MK
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
Cho TAm giác ABC có AM là đường Trung tuyến(M thuộc BC). Tia phân giác của Góc AMB cắt AB tại D. Tia phân giác của Góc AMC cắt AC tại E
a)Tính AD/BD biết AM=6,BC=10
b)CM BM/AM=CE/AE
c) CM : DE song song với BC
a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Tam giác ABM có MD là p/giác
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)
b) Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)
Mà: MC = BM (GT)
\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)
c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)
Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)
Mà: BM = MC (GT)
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
=> DE // BC
a) Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)
nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)