Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Khánh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 21:45

a: Xét ΔCAB có 

P là trung điểm của BC

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BM và PN=BM

hay BMNP là hình bình hành

Phat Nguyen
Xem chi tiết
Phuc
Xem chi tiết
Yen Nhi
21 tháng 11 2021 lúc 19:37

Answer:

Bài 7:

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)

\(\Leftrightarrow\widehat{A}=90^o\)

Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)

\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)

\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)

A B x D C

Khách vãng lai đã xóa
Yen Nhi
21 tháng 11 2021 lúc 19:51

Answer:

Bài 8:

a/ P là trung điểm BC (giả thiết)

N là trung điểm AC (giả thiết)

=> NP là đường trung bình

=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)

Mà M là trung điểm của AB (giả thiết)

=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)

Từ (1) và (2) => NP // MB và NP = MB

=> Tứ giác BMNP là hình bình hành

b/ Ta có: AM = NP và NP // MB hay NP // AM

=> AMPN là hình bình hành

Mà ta có \(\widehat{BAC}=90^o\)

=> AMPN là hình chữ nhật

=> AM = PN, AN = MP

c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ

Tương tự ta có: PR vuông góc AB, RM = MP

Ta xét hai tam giác RAM và AQN:

AM = QN (=NP)

\(\widehat{AMR}=\widehat{QNA}=90^o\)

RM = AN (=NP)

=> Tam giác RAM = tam giác AQN (c.g.c)

\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)

Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)

Ta có: \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)

=> R, A, Q thẳng hàng

C Q N M B R A P

Khách vãng lai đã xóa
dungnt1002vn
Xem chi tiết
Thanh Nhã
Xem chi tiết
Nguyễn Ngọc Như Trang
Xem chi tiết
★Čүċℓøρş★
13 tháng 10 2019 lúc 20:34

Tự vẽ hình nhé bạn

a) * Xét \(\Delta\)ABC có :

M là trung điểm AB

N là trung điểm BC

\(\Rightarrow\)MN là đường trung bình của \(\Delta\)ABC

\(\Rightarrow\)MN // AC hay MN // AQ ( 1 )

* Xét \(\Delta\)ABC  có :

Q là trung điểm AC 

N là trung điểm BC

\(\Rightarrow\)QN là đường trung bình của \(\Delta\)ABC 

\(\Rightarrow\)QN // AB hay QN // AM ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)Tứ giác AQNM là hình bình hành mà có một góc vuông nên nó là hình chữ nhật.

b) Dễ thấy : \(\Delta\)AIM = \(\Delta\)BNM ( c - g - c )

\(\Rightarrow\)Góc AIM = Góc BNM ( 2 góc tương ứng )

Mà hai góc này ở vị trí so le trong nên IA // BN ( 3 )

Dễ thấy : \(\Delta\)KAQ = \(\Delta\)NCQ ( c - g - c )

\(\Rightarrow\)Góc AKQ = Góc CNQ ( 2 góc tương ứng )

Mà hai góc này ở vị trí so le trong nên AK // NC ( 4 )

Từ ( 3 ) và ( 4 ) \(\Rightarrow\)Ba điểm I, A, K thẳng hàng ( theo tiên đề Ơ - clit )

c) Ta có :

AI = BN ( cmt ) và AK = NC ( cmt )

Mà BN = NC nên AI = AK 

Nguyễn Ngọc Như Trang
13 tháng 10 2019 lúc 20:42

ủa hình như góc AIM với góc BNM đâu có so le trong ?

Nguyễn Ngọc Như Trang
13 tháng 10 2019 lúc 20:48

à rồi mình hiểu rồi cảm ơn bạn nha

Huyền Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2022 lúc 15:36

a: Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>MN//AQ và MN=AQ

=>AMNQ là hình bình hành

mà góc QAM=90 độ

nên AMNQ là hình chữ nhật

b: Xét ΔANI có

AB vừa là đường cao, vừa là trung tuyến

nên ΔANI cân tại A
=>AB là phân giác của góc NAI(1)

Xét ΔANK có

AC vừa là đường cao, vừa là trung tuyến

nên ΔANK cân tại A

=>AC là phân giác của góc NAK(2)

Từ (1) và (2) suy ra góc KAI=2*90=180 độ

=>K,A,I thẳng hàng

c: Vì K,A,I thẳng hàng

nên AK=AI

nên A là trung điểm của KI

Duong Thi Nhuong
Xem chi tiết
dinh hoang huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 21:54

a: Xét ΔPRQ có

E là trung điểm của PR

F là trung điểm của QR

Do đó: EF là đường trung bình của ΔPRQ

Suy ra: FE//PQ

hay PQFE là hình thang