tìm x
x-2x+2^2x-2^3x+2^4x-...+2^2006x-2^2007=2^2008-1
Tìm x
\(x-2x+2^2x-2^3x+2^4x-...+2^{2006}x-2^{2007}x=2^{2008}-1\)
Tìm x:
x-2x+\(2^2x-2^3x+2^4x-...........+2^{2006}x-2^{2007}x=2^{2008}-1\)
x - 2x + 22x - 23x + 24x -.....+ 22006x - 22007x = 22008 - 1
x(1 - 2 + 22 - 23 + 24 -....+ 22006 - 22007) = 22008 - 1
Đặt M = 1 - 2 + 22 - 23 + 24 -....+ 22006 - 22007
2M = 2 - 22 + 23 - 24 + 25 -....+ 22007 - 22008
3M = 2M + M = 1 - 22008
=> M = \(\frac{1-2^{2008}}{3}\)
=> x . \(\frac{1-2^{2008}}{3}\) = 22008 - 1
=> x = (22008 - 1)\(\frac{1-2^{2008}}{3}\)
Đến đây chịu
1.Tìm x biết:
a) 7x+2+7x+1+7/57=52x+52x+1+52x+3/131.
b) (4x-3)2=(4x-3)3.
c) |5(2x+3)|+|2(2x+3)|+|2x+3|=16.
d) |x2+|6x-2||=x2+4.
2.Tính tỉ số A/B,biết:
A=1/2+1/3+1/4+...+1/2007+1/2008+1/2009.
B=2008/1+2007/2+2006/3+...+2/2007+2/2008.
Khai triển và thu gọn 2 đa thức \(f\left(x\right)=\left(x-2\right)^{2008}+\left(2x-3\right)^{2007}+2006x\) và \(g\left(x\right)=y^{2009}-2007y^{2008}+2005y^{2007}\)
Giải các phương trình sau :
a) ( 3x - 2 )( 4x + 3 ) = ( 2 - 3x )( x - 1)
b) x2 + ( x + 3 )( 5x - 7 ) = 9
c) 2x2 + 5x + 3 = 0
d) \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}=\frac{3-2x}{2009}+\frac{3-2x}{2010}\)
Giúp mik vs !!!
a, (3x - 2)(4x + 3) = (2 - 3x)(x - 1)
\(\Leftrightarrow\) (3x - 2)(4x + 3) - (2 - 3x)(x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(4x + 3) + (3x - 2)(x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(4x + 3 + x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(5x + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-2}{5}\end{matrix}\right.\)
Vậy S = {\(\frac{2}{3}\); \(\frac{-2}{5}\)}
b, x2 + (x + 3)(5x - 7) = 9
\(\Leftrightarrow\) x2 - 9 + (x + 3)(5x - 7) = 0
\(\Leftrightarrow\) (x - 3)(x + 3) + (x + 3)(5x - 7) = 0
\(\Leftrightarrow\) (x + 3)(x - 3 + 5x - 7) = 0
\(\Leftrightarrow\) (x + 3)(6x - 10) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\6x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy S = {-3; \(\frac{5}{3}\)}
c, 2x2 + 5x + 3 = 0
\(\Leftrightarrow\) 2x2 + 2x + 3x + 3 = 0
\(\Leftrightarrow\) 2x(x + 1) + 3(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(2x + 3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy S = {-1; \(\frac{3}{2}\)}
d, \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}=\frac{3-2x}{2009}+\frac{3-2x}{2010}\)
\(\Leftrightarrow\) \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}-\frac{3-2x}{2009}-\frac{3-2x}{2010}=0\)
\(\Leftrightarrow\) (3 - 2x)\(\left(\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)\) = 0
\(\Leftrightarrow\) 3 - 2x = 0
\(\Leftrightarrow\) x = \(\frac{3}{2}\)
Vậy S = {\(\frac{3}{2}\)}
Chúc bn học tốt!!
Tìm số thực xx, biết:
a) 3√x<2x3<2 :
b) 3√2x−1>−3:2x−13>−3:
c) 3√2−3x≤1:2−3x3≤1:
d) 3√3−4x≥53−4x3≥5.
a) \(2x^2+6x+2=\left(2x+6\right)\sqrt{x^2+1}\)
b) \(\sqrt{2006x^2-2005}+\sqrt{2005x^2-2004}=\sqrt{2006x^2+2x-2003}+\sqrt{2005x^2+x-2002}\)
c) \(2\sqrt{x^2-4x+5}+\sqrt{\dfrac{1}{4}x^2-x+5}=-4x^2+16x-12\)
a) Đặt \(u=\sqrt{x^2+1}\left(u>0\right)\Rightarrow u^2-1=x^2\)
Phương trình trở thành :
\(2u^2+6x-\left(2x+6\right)t=0\)
\(\Rightarrow\Delta_t=\left(2x+6\right)^2-48x=\left(2x-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+6-2x+6}{4}=3\\t=\dfrac{2x+6+2x-6}{4}=x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=3\\\sqrt{x^2+1}=x\end{matrix}\right.\)
đến đây thì ez rồi
c) Ta có :
\(2\sqrt{x^2-4x+5}=2\sqrt{\left(x-2\right)^2+1}\ge2\)
\(\sqrt{\dfrac{1}{4}x^2-x+1+4}=\sqrt{\left(\dfrac{1}{2}x-1\right)^2+4}\ge2\)
\(\Rightarrow2\sqrt{x^2-4x+5}+\sqrt{\dfrac{1}{4}x^2-x+5}\ge4\)
ta lại có: \(-4x^2+16x-12=-4\left(x^2-4x+4\right)+4\le4\)
\(\left\{{}\begin{matrix}VP\ge4\\VT\le4\end{matrix}\right.\)
Dấu bằng xảy ra khi x = 2
vậy x=2 là nghiệm của phương trình
Tìm x, biết:
a) 2 x + 1 x 2 − 4 x + 4 − 2 x + 5 x 2 − 4 = 0 với x ≠ ± 2 ;
b) 3 x − 2 − 4 x 4 − x 2 + x x + 2 = 0 với x ≠ ± 2 ;
1) tính các biểu thức sau
a) 5x(2x^n-1-y^n)-2x^n-2(5x-y^3)+xy^3(5y^n-3-2x^n-3) (với x thuộc N và x>=3)
b) 3x^n-2(x^n+2-y^n+2)+y^n+2(3x^n-2-y^n-2) (với x thuộc N và n>=2)
2) rút gọn biểu thức rồi tính giá trị
x^10-2006x^9+2006x^8-2006x^7+2006x^6+...-2006x+2006 biết x=2005
3) chứng tỏ rằng biểu thức sau luôn luôn không âm với mọi giá trị của x và y
A=x^2+y^2-(y(3x-2y)-(x(x+2y)-y(y-x)))