Tìm tọa độ giao điểm của 2 đường thẳng D1: 4x-3y-26=0 và D2: 3x_4y-7=0
Tọa độ giao điểm của 2 đường thẳng d1: 7x - 3y + 16 = 0 và d2: x - 10 = 0 là:
A. (-10;-18)
B. (10; 86 3 )
C. (-10;18)
D. (-10; - 86 3 )
Chọn B.
Tọa độ giao điểm của 2 đường thẳng d1: 7x - 3y + 16 = 0 và d2: x + 10 = 0 là nghiệm của hệ phương trình:
Vậy giao điểm của hai đường thẳng d1 và d2 là
Tọa độ giao điểm của đường thẳng Δ: 4x - 3y - 26 = 0 và đường thẳng d: 3x + 4y - 7 = 0 là:
A. (5;2)
B. (2;6)
C. (2;-6)
D. (5;-2)
Chọn D.
Tọa độ giao điểm của đường thẳng Δ: 4x - 3y - 26 = 0 và đường thẳng d: 3x + 4y - 7 = 0 là:
Vậy (5;-2).
Cho 2 đường thẳng: y= -3x -7 (d1) và y=2x+3 (d2)
Tìm tọa độ giao điểm M của hai đường thẳng (d1) , (d2)
Gọi \(A\left(x_0;y_0\right)\) là giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}y_0=-3x_0-7\\y_0=2x_0+3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{4}{5}\\y_0=-\dfrac{23}{5}\end{matrix}\right.\)
\(\Rightarrow M\left(-\dfrac{4}{5};-\dfrac{23}{5}\right)\)
Bài II (3,0 điểm) Cho 2 đường thẳng: (d1): y= +2x 4 và (d2): y=− +x 1 .
1) Tìm tọa độ giao điểm A của đường thẳng (d1) và đường thẳng (d2).
2) Xác định hệ số a, b của đường thẳng y ax b= + (a0) biết đường thẳng đó song song với đường thẳng (d1) và đi qua điểm M (-1; 3).
3) Gọi B và C lần lượt là giao điểm của đường thẳng (d1) và (d2) với trục hoành. Tính diện tích tam giác ABC.
1, PT hoành độ giao điểm: \(2x+4=-x+1\Leftrightarrow x=-1\Leftrightarrow y=0\)
\(\Leftrightarrow A\left(-1;0\right)\)
Vậy \(A\left(-1;0\right)\) là tọa độ giao điểm 2 đths
2, Đt cần tìm //(d1)\(\Leftrightarrow a=2;b\ne4\)
Đt cần tìm đi qua M(-1;3) nên \(-a+b=3\Leftrightarrow-2+b=3\Leftrightarrow b=5\left(tm\right)\)
Vậy đths là \(y=2x+5\)
3, PT giao điểm d1 với trục hoành là \(y=0\Leftrightarrow2x+4=0\Leftrightarrow x=-2\Leftrightarrow B\left(-2;0\right)\)
PT giao điểm d2 với trục hoành là \(y=0\Leftrightarrow-x+1=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\)
Do đó \(BC=\left|-2\right|+\left|1\right|=3;OA=\left|-1\right|=1\)
Vậy \(S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{3}{2}\left(đvdt\right)\)
Tìm tọa độ giao điểm của hai đường thẳng sau d 1 : x - 2 - 2 = y + 3 1 và d2 : x- y + 1= 0.
A .(-2; -1)
B.(-2; 3)
C.(2; -3)
D.(2; 1)
Cho hai đường thẳng d 1 = 2x -2 và d 2 = 3 - 4x . Tung độ giao điểm của d 1 ; d 2 có tọa độ là:
A. y = - 1 3
B. y = 2 3
C. y = 1
D. y = -1
Cho hai đường thẳng d 1 = 2x -2 và d 2 = 3 - 4x . Tung độ giao điểm của d 1 ; d 2 có tọa độ là:
A. y = - 1 3
B. y = 2 3
C. y = 1
D. y = -1
Cho 2 hàm số bậc nhất y=4x-2 và y=-x + 3 A. Vẽ trên cùng 1 mặt phẳng tọa độ Oxy đồ thị hai hàm số y=4x -2 (d1) và y= -x +3 (d2) B. Gọi M là giao điểm của hai đường thẳng d1 và d2. Tìm tọa độ điểm M C. Tính góc tạo bởi 2 đường thẳng d1, d2 với trục Ox (làm tròn đến phút) D. Tìm đường thẳng d cắt d1 tại điềm A có tung độ là 6 và cắt d2 tại điểm B có hoành độ bằng nửa tung độ A. Tính chu vi và các góc tam giác AMB
a:
b: Phương trình hoành độ giao điểm là:
4x-2=-x+3
=>4x+x=3+2
=>5x=5
=>x=1
Thay x=1 vào y=-x+3, ta được:
\(y=-1+3=2\)
Vậy: M(1;2)
c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox
(d1): y=4x-2
=>\(tan\alpha=4\)
=>\(\alpha=76^0\)
(d2): y=-x+3
=>\(tan\beta=-1\)
=>\(\beta=135^0\)
d: Thay y=6 vào (d1), ta được:
4x-2=6
=>4x=8
=>x=2
=>A(2;6)
Thay x=6/2=3 vào (d2), ta được:
\(y=-3+3=0\)
vậy: B(3;0)
Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)
Vậy: (d): y=-6x+18
e: A(2;6); B(3;0); M(1;2)
\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)
\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)
Chu vi tam giác AMB là:
\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)
Xét ΔAMB có
\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)
=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)
Xét ΔAMB có
\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)
=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)
=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)
=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)
Trong mặt phẳng tọa độ Oxy, hai đường thẳng d 1 : 4 x + 3 y - 18 = 0 ; d 2 : 3 x + 5 y - 19 = 0 cắt nhau tại điểm có toạ độ là