Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Doãn Kiên
Xem chi tiết
thuan doan
5 tháng 5 2019 lúc 16:51

sử dụng phương pháp miền giá trị

Thái Doãn Kiên
5 tháng 5 2019 lúc 20:32

bạn nói rõ hơn được không?

Phan Lê Tú Uyên
Xem chi tiết
Thái Đặng
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
24 tháng 9 2017 lúc 16:33

\(\frac{\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}+y\sqrt{y}}{x-y}\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}^3+\sqrt{y}^3}\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}^3+\sqrt{y}^3}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\sqrt{x}+\sqrt{y}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y-x+\sqrt{xy}-y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{\sqrt{xy}-2y}{\sqrt{x}-\sqrt{y}}\right)\)

tự làm tiếp nh đến đây dễ rồi

nguyễn đỗ minh khánh
24 tháng 9 2017 lúc 16:27

Năm 1930 có sự kiện gì và năm 1945 có sự kiện gì toán lóp 4

nguyễn đỗ minh khánh
24 tháng 9 2017 lúc 16:30

mình không trả lời được nên mới hỏi

mạnh Vũ đức
Xem chi tiết
Phan Lê Kim Chi
Xem chi tiết
Đinh Thu Trang
1 tháng 9 2021 lúc 20:23

xin lỗi bạn nhé mik lớp 7

Khách vãng lai đã xóa
Mai Quỳnh Anh
Xem chi tiết
gh
Xem chi tiết
Khánh Ngọc
30 tháng 10 2020 lúc 20:54

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 10 2020 lúc 20:55

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 10 2020 lúc 21:04

Bài 2.

\(P=\left(\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}-1}\right)\div\left(\frac{2}{x-1}+\frac{1}{\sqrt{x}+1}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\sqrt{x}-1}{1}=\frac{x+1}{\sqrt{x}}\)

Xét P - 2 ta có :

\(P-2=\frac{x+1}{\sqrt{x}}-2=\frac{x+1}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}=\frac{x-2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

Với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2>0\\\sqrt{x}>0\end{cases}}\Rightarrow\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=> \(P-2>0\)

=> \(P>2\)

Khách vãng lai đã xóa
~_~  ^~^  ^_^  {_}  +_+...
Xem chi tiết
✰Ťøρ ²⁷ Ťɾїệʉ Vâɳ ŇD✰
10 tháng 3 2020 lúc 22:26

1) Thay x=16 vào A ta có:

A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)

A=\(\frac{16+4+1}{4+2}\)

A=\(\frac{21}{6}=\frac{7}{2}\)

Khách vãng lai đã xóa
Phạm Thị Thùy Linh
11 tháng 3 2020 lúc 8:33

\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)

\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)

\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)

Khách vãng lai đã xóa
Nguyễn Diệu Linh
Xem chi tiết
Trần Anh
Xem chi tiết