(\(\frac{x}{x+1}\)+1):(1-\(\frac{3x^2}{1-x^2}\))
a,\(\frac{3}{x}+\frac{1}{x+3}+\frac{3}{x+6}+\frac{1}{x+7}=\frac{1}{1-x}\)
b, \(\frac{1}{x-5}+\frac{1}{x-2}+\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+3}=\frac{3x-3}{4}\)
c,\(\frac{1}{x-3}+\frac{1}{3x+1}+\frac{10x-13}{4x-6}=\frac{1}{x+1}+\frac{1}{2x-1}+\frac{1}{3x+7}\)
d,\(\frac{x^2+x+1}{2x-1}\left(\frac{3x^2-x+5}{4x-2}-3\right)=8\)
e,\(\frac{2x^2-3}{3x-1}\left(2x-\frac{7+4x}{3x-1}\right)=2\)
f,\(\frac{x\left(3x-1\right)\left(3x^2+1\right)\left(6x^2-3x-1\right)}{\left(x+1\right)^3}=\frac{1}{2}\)
g, \(x\left(x^2+2\right)\left(x^2+2x+8+\frac{12}{x-2}\right)=3\left(x-2\right)\)
bài 1:giải các pt sau:
a/\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
b/\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
c/\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
d/\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
e/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
f\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
Thực hiện phép tính:
a)\(\frac{2x+6}{3x^2-x}:\frac{x^2+3x}{1-3x}\)
b)\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
c)\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
d)\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
e)\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
f)\(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
g)\(\frac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\frac{2}{x^2+3}+\frac{1}{x+1}\)
\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha
GIẢI PHƯƠNG TRÌNH
a)\(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
b)\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
c)\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
d)\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
<=> 1 - x + 3(x + 1) = 2x + 3
<=> 1 - x + 3x + 3 = 2x + 3
<=> 1 - x + 3x + 3 - 2x = 3
<=> 4 = 3 (vô lý)
=> pt vô nghiệm
b) ĐKXĐ: \(x\ne1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)
<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30
<=> -x + 4x2 - 14 = 15x - 30
<=> x - 4x2 + 14 = 15x - 30
<=> x - 4x2 + 14 + 15x - 30 = 0
<=> 16x - 4x2 - 16 = 0
<=> 4(4x - x2 - 4) = 0
<=> -x2 + 4x - 4 = 0
<=> x2 - 4x + 4 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2 (ktm)
=> pt vô nghiệm
c) xem bài 4 ở đây: Câu hỏi của gjfkm
d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)
\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)
<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10
<=> 2x2 - 14 = 2x2 + x - 10
<=> 2x2 - 14 - 2x2 = x - 10
<=> -14 = x - 10
<=> -14 + 10 = x
<=> -4 = x
<=> x = -4
1. \(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
2. \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
3. \(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
a)\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}\)
b) \(\frac{1}{x-1}-\frac{x^3-x}{x^2+1}\left(\frac{1}{x^2-2x+1}+\frac{1}{1-x^2}\right)\)
a) \(=\frac{3x+2}{\left(3x+2\right).\left(3x-2\right)}-\frac{12x-8}{\left(3x+2\right).\left(3x-2\right)}-\frac{-3x+6}{\left(3x-2\right).\left(3x+2\right)}\)
\(b,\frac{x^2+1}{\left(x-1\right).\left(x^2+1\right)}-\frac{x.\left(x^2-1\right).\left(x-1\right)}{\left(x-1\right).\left(x^2+1\right)}.\left(\frac{1}{\left(x-1\right)^2}-\frac{1}{\left(x+1\right).\left(x-1\right)}\right)\)
p/s: hướng dấn cách tách thoy, tự làm nha~~lazy
a )
\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}=0\)
\(\Leftrightarrow\frac{\left(3x+2\right)-4.\left(3x-2\right)}{9x^2-4}=\frac{3x-6}{4-9x^2}\) ( * )
Đkxđ : \(\hept{\begin{cases}9x^2-4\ne0\\4-9x^2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\pm\sqrt{\frac{4}{9}}\\x\ne\pm\sqrt{\frac{4}{9}}\end{cases}}\Leftrightarrow x\ne\pm\frac{2}{3}\)
( * ) => \(\left(4-9x^2\right).\left[\left(3x+2\right)+\left(-12x+8\right)\right]=\left(9x^2-4\right).\left(3x-6\right)\)
\(\Leftrightarrow\left(4-9x^2\right).\left(-9x+10\right)=\left(9x^2-4\right).\left(3x-6\right)\)
\(\Leftrightarrow-36x+40+81x^3-90x^2=27x^3-54x^2-12x+24\)
\(\Leftrightarrow54x^3-36x^2-24x+16=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\left(loai\right)\\x=-\frac{2}{3}\left(loai\right)\end{cases}}\)
Vậy : phương trình vô nghiệm
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
Giair pt:
c, x ( 3x-1) (3x+1) (3x+2) =8
d, (x+1) (2x+3) (2x+5) (x+3)=45
e,x4+ 3x3 - 15x2 - 19x + 3 = 0
f, \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=\frac{1}{3}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(a)(\frac{9}{x^3-9x}+\frac{1}{x+3}):(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}) b)\frac{x+1}{x+2}(\frac{x+2}{x+3}:\frac{x+3}{x+1}) c)\frac{8}{(x^2+3)(x^2+3)}+\frac{2}{x^2+3}+\frac{1}{x+1}\)
\(\frac{x^2-x}{x^2-x+1}-\frac{x^2-x+2}{x^2-x-2}=1.\)
\(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
\(\frac{1}{x^2-2x+2}+\frac{1}{x^2-2x+3}=\frac{9}{2\left(x^2-2x+4\right)}\)
\(\frac{1}{x^2-2x+3}+\frac{1}{x^2-2x+2}=\frac{6}{x^2-2x+4}\)